CNN和RCNN的关系和区别
RCNN(Region-based Convolutional Neural Network)和 CNN(Convolutional Neural Network)是两种不同的神经网络架构,它们在应用和结构上有所不同。以下是它们之间的主要区别:
1. 基本概念
-
CNN(Convolutional Neural Network):
- CNN 是一种深度学习架构,主要用于图像和视频等二维数据的处理。它通过卷积层(Convolutional Layers)提取图像的局部特征,并通过池化层(Pooling Layers)减小数据的空间尺寸。CNN 适用于单一的图像分类任务。
-
RCNN(Region-based Convolutional Neural Network):
- RCNN 是一种基于区域的卷积神经网络,主要用于 目标检测 任务。它在传统的 CNN 的基础上加入了区域提议(Region Proposals)机制,用于检测图像中的多个目标区域,并在每个区域上使用 CNN 进行特征提取和分类。
2. 主要区别
a. 输入方式
-
CNN:
- 输入通常是整个图像,CNN 处理整个图像来进行分类,输出类别标签。图像的每个像素都参与卷积和池化操作,提取全局特征。
-
RCNN:
- 输入不是整个图像,而是图像中多个候选区域(Region Proposals)。RCNN 首先使用外部的区域提议算法(如 Selective Search)生成图像中可能包含物体的区域,然后对每个区域单独进行卷积操作。最终每个区域都被分类成不同的物体类别或背景。
b. 目标
-
CNN:
- 主要用于 图像分类,它将整个图像输入网络,通过卷积操作提取特征并最终分类。
-
RCNN:
- 主要用于 目标检测,它不仅要识别图像中的物体类别,还要定位物体的位置(通过边界框回归)。RCNN 通过对每个候选区域进行独立的分类,完成目标检测任务。
c. 处理方式
-
CNN:
- 直接处理整个图像,网络的卷积层和池化层操作是在整个图像的像素上进行的。
-
RCNN:
- 首先生成多个候选区域,每个候选区域都代表图像中可能的物体位置。然后,RCNN 使用 CNN 对每个候选区域单独进行处理,提取局部特征。这些特征随后用于目标分类和位置回归。
d. 特征提取
-
CNN:
- 在传统的 CNN 中,卷积操作会对整个图像进行处理,学习到的特征通常是全局性的,用于图像的整体分类。
-
RCNN:
- 在 RCNN 中,特征提取是对每个候选区域进行的。每个候选区域被看作一个独立的子图,RCNN 会对每个区域单独提取特征。这些局部特征用于物体的检测。
e. 计算效率
-
CNN:
- 相比于 RCNN,CNN 的计算更加高效,因为它处理的是整个图像,不需要生成候选区域。
-
RCNN:
- RCNN 的计算效率较低,因为它需要对每个候选区域进行独立的卷积操作。如果图像中有大量候选区域,那么计算量就会变得非常大。为了提高效率,后来的方法(如 Fast RCNN 和 Faster RCNN)对 RCNN 进行了优化。
3. RCNN 的优化版本
RCNN 的计算量非常大,因为它需要对每个候选区域单独执行 CNN 的卷积计算。为了提高效率,RCNN 出现了几个优化版本:
-
Fast RCNN:
- Fast RCNN 改进了 RCNN 的效率,它通过一次性将整个图像输入 CNN,生成一个特征图(Feature Map)。然后,对于每个候选区域(Region Proposal),从特征图中提取出该区域的特征。这种方法避免了对每个候选区域单独运行 CNN。
-
Faster RCNN:
- Faster RCNN 进一步优化了 Fast RCNN,通过引入一个 Region Proposal Network (RPN),该网络在图像中自动生成候选区域(Region Proposals),不再依赖外部算法(如 Selective Search)生成候选区域。这大大提高了计算效率,使得目标检测变得更加快速和精确。
4. 总结
| 特性 | CNN | RCNN |
|---|---|---|
| 输入 | 整个图像 | 图像中的多个候选区域 |
| 目标 | 图像分类 | 目标检测(分类+定位) |
| 计算方式 | 直接对整个图像进行卷积和池化 | 对每个候选区域单独处理 |
| 特征提取 | 提取全局图像特征 | 提取局部区域特征 |
| 计算效率 | 高效 | 较低,需要处理多个区域 |
| 发展版本 | 无 | Fast RCNN, Faster RCNN |
总结
- CNN 是用于 图像分类 的基本网络架构,它通过对整个图像进行卷积处理来提取特征并进行分类。
- RCNN 是专为 目标检测 设计的网络,通过先生成候选区域,再对每个区域进行卷积操作,从而同时进行物体的 分类 和 定位。由于 RCNN 的计算量较大,后续的 Fast RCNN 和 Faster RCNN 进行了优化,使得目标检测更加高效和准确。
相关文章:
CNN和RCNN的关系和区别
RCNN(Region-based Convolutional Neural Network)和 CNN(Convolutional Neural Network)是两种不同的神经网络架构,它们在应用和结构上有所不同。以下是它们之间的主要区别: 1. 基本概念 CNN(…...
Chromium 进程降权和提权模拟示例c++
一、背景知识概念参考微软链接: 强制完整性控制 - Win32 应用程序 |Microsoft 学习 授权) (模拟级别 - Win32 apps | Microsoft Learn DuplicateTokenEx 函数 (securitybaseapi.h) - Win32 apps | Microsoft Learn 本文主要演示 low, medium, high, and system 四…...
【测试语言篇一】Python进阶篇:内置容器数据类型
一、列表 列表(List)是一种有序且可变的容器数据类型。 与集合(Set)不同,列表允许重复的元素。 它方便保存数据序列并对其进行进一步迭代。 列表用方括号创建。 my_list ["banana", "cherry", …...
湘潭大学软件工程专业选修 SOA 期末考试复习(二)
文章目录 回顾序言第一章课后题填空选择简答 第二章课后题填空选择编程 计划第三章课后题填空选择简答编程 第四章课后题填空选择简答编程 第五章课后题填空选择简答编程 第六章课后题说明 第七章课后题填空选择简答编程 第八章课后题填空选择简答编程 第九章课后题填空选择简答…...
改进的正弦余弦算法复现
本文所涉及所有资源均在 传知代码平台 可获取。 目录 一、背景及意义 (一)背包问题背景...
Day13杨辉三角
给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 class Solution {public List<List<Integer>> generate(int numRows) {List<List<Integer>> res new Arra…...
【c知道】Hadoop工作原理。
请解释一下Hadoop中MapReduce的工作原理,并说明如何进行MapReduce程序的编写和调试。 Hadoop MapReduce是一种分布式计算模型,它将大规模的数据处理任务分解成一系列小的、独立的任务(Map任务)和后续的聚合任务(Reduce…...
React.lazy() 懒加载
概要 React.lazy() 是 React 16.6 引入的一个功能,用于实现代码分割(code splitting)。它允许你懒加载组件,即在需要时才加载组件,而不是在应用初始加载时就加载所有组件。这种方法可以显著提高应用的性能,…...
【自学笔记】神经网络(1)
文章目录 介绍模型结构层(Layer)神经元 前向传播反向传播Q1: 为什么要用向量Q2: 不用激活函数会发生什么 介绍 我们已经学习了简单的分类任务和回归任务,也认识了逻辑回归和正则化等技巧,已经可以搭建一个简单的神经网络模型了。 …...
c#————扩展方法
关键点: 定义扩展方法的类和方法必须是静态的: 扩展方法必须在一个静态类中定义。扩展方法本身也必须是静态的。第一个参数使用 this 关键字: 扩展方法的第一个参数指定要扩展的类型,并且在这个参数前加上 this 关键字。这个参数…...
前向-后向卡尔曼滤波器(Forward-Backward Kalman Filter)资料汇总
《卡尔曼滤波引出的RTS平滑》参考位置2《卡尔曼滤波系列——(六)卡尔曼平滑》《关于卡尔曼滤波和卡尔曼平滑关系的理解》——有m语言例程《Forward Backwards Kalman Filter》——Matlab软件《卡尔曼滤波与隐马尔可夫模型》...
云集电商:如何通过 OceanBase 实现降本 87.5%|OceanBase案例
云集电商,一家聚焦于社交电商的电商公司,专注于‘精选’理念,致力于为会员提供超高性价比的全品类精选商品,以“批发价”让亿万消费者买到质量可靠的商品。面对近年来外部环境的变化,公司对成本控制提出了更高要求&…...
详解Rust标准库:BTreeMap
std::collections::BTreeMap定义 B树也称B-树,注意不是减号,是一棵多路平衡查找树;理论上,二叉搜索树 (BST) 是最佳的选择排序映射,但是每次查找时层数越多I/O次数越多,B 树使每个节…...
.NET WPF CommunityToolkit.Mvvm框架
文章目录 .NET WPF CommunityToolkit.Mvvm框架1 源生成器1.1 ObservablePropertyAttribute & RelayCommandAttribute1.2 INotifyPropertyChangedAttribute 2 可观测对象2.1 ObservableValidator2.2 ObservableRecipient .NET WPF CommunityToolkit.Mvvm框架 1 源生成器 1…...
微信小程序使用阿里巴巴矢量图标库正确姿势
1、打开官网:https://www.iconfont.cn/,把整理好的图标下载解压。 2、由于微信小程序不支持直接在wxss中引入.ttf/.woff/.woff2(在开发工具生效,手机不生效)。我们需要对下载的文件进一步处理。 eot:IE系列…...
【K8S问题系列 |1 】Kubernetes 中 NodePort 类型的 Service 无法访问【已解决】
在 Kubernetes 中,NodePort 类型的 Service 允许用户通过每个节点的 IP 地址和指定的端口访问应用程序。如果 NodePort 类型的 Service 无法通过节点的 IP 地址和指定端口进行访问,可能会导致用户无法访问应用。本文将详细分析该问题的常见原因及其解决方…...
Java基础Day-Thirteen
Java字符串 String类 创建String对象的方法 方法一:创建一个字符串对象imooc,名为s1 String s1"imooc"; 方法二:创建一个空字符串对象,名为s2 String s2new String(); 方法三:创建一个字符串对象imooc&a…...
LangChain实际应用
1、LangChain与RAG检索增强生成技术 LangChain是个开源框架,可以将大语言模型与本地数据源相结合,该框架目前以Python或JavaScript包的形式提供; 大语言模型:可以是GPT-4或HuggingFace的模型;本地数据源:…...
【数据结构】哈希/散列表
目录 一、哈希表的概念二、哈希冲突2.1 冲突概念2.2 冲突避免2.2.1 方式一哈希函数设计2.2.2 方式二负载因子调节 2.3 冲突解决2.3.1 闭散列2.3.2 开散列(哈希桶) 2.4 性能分析 三、实现简单hash桶3.1 内部类与成员变量3.2 插入3.3 获取value值3.4 总代码…...
flutter 项目初建碰到的控制台报错无法启动问题
在第一次运行flutter时,会碰见一直卡在Runing Gradle task assembleDebug的问题。其实出现这个问题的原因有两个。 一:如果你flutter -doctor 检测都很ok,而且环境配置都很正确,那么大概率就是需要多等一会,少则几十分…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
ArcGIS Pro+ArcGIS给你的地图加上北回归线!
今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等,设置经线、纬线都以10间隔显示。 2、需要插入背会归线…...
云原生安全实战:API网关Envoy的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口,负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...
Java多线程实现之Runnable接口深度解析
Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...
