当前位置: 首页 > news >正文

Transformer和BERT的区别

Transformer和BERT的区别比较表:

两者的位置编码:

为什么要对位置进行编码?
Attention提取特征的时候,可以获取全局每个词对之间的关系,但是并没有显式保留时序信息,或者说位置信息。就算打乱序列中token的顺序,最后所得到的Attention结果也不会变,这会丢失语言中的时序信息,因此需要额外对位置进行编码以引入时序信息。

Position Embedding in Transformer
在Transformer中,位置编码是由sin /cos sin/cossin/cos函数生成的固定值。

具体做法:用不同频率的正余弦函数对位置信息进行编码,位置编码向量的维度与文本编码向量的维度相同,即dmodeld_{model}dmodel。因此二者可以直接相加作为token最终的编码向量。

pos表示位置,i 表示所在维度。

即使测试集中某些样本超出了最大文本长度,这种编码方式仍然可以获得有效的相对位置表示。

Position Embedding in BERT
在BERT中,与一般的词嵌入编码类似,位置编码也是随机生成且可训练的,维度为[seq_length, width],其中seq_length代表序列长度,width代表每一个token对应的向量长度。

从实现上可以看到,BERT中将位置编码创建为一个tensorflow变量,并将其broadcast到与词嵌入编码同维度后相加。

with tf.control_dependencies([assert_op]):full_position_embeddings = tf.get_variable(name=position_embedding_name,shape=[max_position_embeddings, width],initializer=create_initializer(initializer_range))# 这里position embedding是可学习的参数,[max_position_embeddings, width]# 但是通常实际输入序列没有达到max_position_embeddings# 所以为了提高训练速度,使用tf.slice取出句子长度的embeddingposition_embeddings = tf.slice(full_position_embeddings, [0, 0],[seq_length, -1])num_dims = len(output.shape.as_list())# word embedding之后的tensor是[batch_size, seq_length, width]# 因为位置编码是与输入内容无关,它的shape总是[seq_length, width]# 我们无法把位置Embedding加到word embedding上# 因此我们需要扩展位置编码为[1, seq_length, width]# 然后就能通过broadcasting加上去了。position_broadcast_shape = []for _ in range(num_dims - 2):position_broadcast_shape.append(1)position_broadcast_shape.extend([seq_length, width])position_embeddings = tf.reshape(position_embeddings,position_broadcast_shape)output += position_embeddings

 两者之间的区别


Transformer的位置编码是一个固定值,因此只能标记位置,但是不能标记这个位置有什么用。

BERT的位置编码是可学习的Embedding,因此不仅可以标记位置,还可以学习到这个位置有什么用。

BERT选择这么做的原因可能是,相比于Transformer,BERT训练所用的数据量充足,完全可以让模型自己学习。

如何延拓BERT的位置编码?
我们知道,BERT模型最多只能处理512个token的文本,其原因在于BERT使用了随机初始化训练出来的绝对位置编码,最大位置设为为512,若是文本长于512便无位置编码可用。

另一方面, 复杂度使得长序列的显存用量极大,一般显卡就连finetune也做不到。

苏神提出了一种层次分解的方法将BERT的位置编码最多可以延拓至26万。

具体内容可自行阅读苏神博客

层次分解位置编码,让BERT可以处理超长文本

相关文章:

Transformer和BERT的区别

Transformer和BERT的区别比较表: 两者的位置编码: 为什么要对位置进行编码? Attention提取特征的时候,可以获取全局每个词对之间的关系,但是并没有显式保留时序信息,或者说位置信息。就算打乱序列中token…...

linux 加载uPD720201固件

硬件 jetson orin nano jetpack 35.5.0 uPD720201是瑞萨推出的怕pcie扩展usb3.0芯片,支持flash主动加载与在系统被动加载 本文介绍如何做到没接flash情况下由系统加载固件 在uPD720201没接spi flash时候nano启动会报XhciDxe错误而自动重启,首先需要在ue…...

C语言中的信号量semaphore详解

在C语言中,**信号量(Semaphore)**是一种常用的同步机制,用于控制多个线程或进程对共享资源的访问。信号量可以实现类似于锁的效果,但更为灵活,适用于并发编程场景。 1. 什么是信号量 信号量可以看作是一个…...

0087__DirectX11 With Windows SDK--02 顶点/像素着色器的创建、顶点缓冲区

DirectX11 With Windows SDK--02 顶点/像素着色器的创建、顶点缓冲区-CSDN博客...

Windows换机华为擎云(银河麒麟V10+麒麟9000C CPU)后,使用selenium的程序怎么办(20241030)

原本的 seleniumChrome 已无法正常工作。chromedriver 报错:不支持 Linux/aarch64。 1、尝试Firefox、edge驱动。Firefox有一个geckodriver版本与Firefox版本的对照表,我看了一下,感觉他们是始终跟进新技术的。银河麒麟的很多库都是几年前的…...

linux 下 signal() 函数的用法,信号类型在哪里定义的?

--------------------------------------------------- author: hjjdebug date: 2024年 11月 07日 星期四 14:47:33 CST description: linux 下 signal() 函数的用法 --------------------------------------------------- signal 是linux 下最基础的进程通讯机制…...

享元模式及其运用场景:结合工厂模式和单例模式优化内存使用

介绍 享元模式(Flyweight Pattern)是一种结构型设计模式,它通过共享对象来减少内存使用,尤其是对于大量相似对象的场景。享元模式通常与工厂模式和单例模式结合使用,从而有效地控制和复用对象的创建。在享元模式中&am…...

【物联网技术】ESP8266 WIFI模块在STA模式下实现UDP与电脑/手机网络助手通信——UDP数据透传

前言:完成ESP8266 WIFI模块在STA模式下实现UDP与电脑/手机网络助手通信——实现UDP数据透传 STA模式,通俗来说就是模块/单片机去连接路由器/热点来通信。 UDP协议,是传输层协议,UDP没有服务器和客户端的说法。 本实验需要注意,wifi模块/单片机与电脑/手机需要连接在同一个…...

【SQL Server】华中农业大学空间数据库实验报告 实验一 数据库

实验目的 熟悉了解掌握SQL Server软件的基本操作与使用方法,认识界面,了解其两个基本操作系统文件,并能熟练区分与应用交互式与T-SQL式两种方法在SQL Server中如何进行操作;学习有关数据库的基本操作,包括&#xff1a…...

操作系统页面置换算法Java实现(LFU,OPT,LRU,LFU,CLOCK)

FIFO先进先出算法 java import java.util.LinkedList; import java.util.Queue; public class Main { //先进先出的思想 是 用一个队列去模拟数据 如果当前不存在就是发生缺页中断了 就需要添加 如果已经满了 将队头的元素出队 即可 //先进先出 就是一个数组 frameCount publi…...

Request和Response

前言 这一节主要讲的是Request和Response还有一些实例 1. 介绍 就是这两个参数 WebServlet("/demo7") public class ServletDemo7 extends HttpServlet {Overrideprotected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletExcepti…...

【青牛科技】GC8549替代LV8549/ONSEMI在摇头机、舞台灯、打印机和白色家电等产品上的应用分析

引言 在现代电子产品中,控制芯片的性能直接影响到设备的功能和用户体验。摇头机、舞台灯、打印机和白色家电等领域对控制精度、功耗和成本等方面的要求日益提高。LV8549/ONSEMI等国际品牌的芯片曾是这些产品的主要选择,但随着国内半导体技术的进步&…...

(十二)JavaWeb后端开发——MySQL数据库

目录 1.数据库概述 2.MyQSL 3.数据库设计 DDL 4.MySQL常见数据类型 5.DML 1.数据库概述 数据库:DataBase(DB),是存储和管理数据的仓库 数据库管理系统:DataBase ManagementSystem(DBMS),操纵和管理数据库的大型软件 SQL&a…...

pnpm管理多工作区依赖

pnpm是一个支持多包仓库的一个包管理工具,那么怎么可以在项目根目录下执行pnpm install的时候,也能同步让所有的工作区都能够通安装依赖呢? 方式一,在执行pnpm install指令的时候,添加recursive参数: pnpm install --recursive 方式二,在项目的根目录下通过pnpm的配置文件p…...

如何在本地Linux服务器搭建WordPress网站结合内网穿透随时随地可访问

文章目录 前言1. 安装WordPress2. 创建WordPress数据库3. 安装相对URL插件4. 安装内网穿透发布网站4.1 命令行方式:4.2. 配置wordpress公网地址 5. 配置WordPress固定公网地址 前言 本文主要介绍如何在Linux Ubuntu系统上使用WordPress搭建一个本地网站&#xff0c…...

二、应用层,《计算机网络(自顶向下方法 第7版,James F.Kurose,Keith W.Ross)》

文章目录 零、前言一、应用层协议原理1.1 网络应用的体系结构1.1.1 客户-服务器(C/S)体系结构1.1.2 对等体(P2P)体系结构1.1.3 C/S 和 P2P体系结构的混合体 1.2 进程通信1.2.1 问题1:对进程进行编址(addressing)&#…...

面粉直供系统|基于java和小程序的食品面粉直供系统设计与实现(源码+数据库+文档)

面粉直供系统 目录 基于java和小程序的食品面粉直供系统设计与实现 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍:✌️大厂码农|毕设布道师&#x…...

十四:java web(6)-- Spring Spring MVC

目录 Spring MVC 1.1 Spring MVC 概述 1.1.1 什么是 MVC 模式 1.1.2 Spring MVC 工作原理 1.2 Spring MVC 核心组件 1.2.1 DispatcherServlet 1.2.2 控制器(Controller) 1.2.3 请求映射(RequestMapping) 1.2.4 视图解析器…...

Java代码实现策略模式处理支付付款业务

1.需求:因为付款功能集成的第三方支付SDK越来越来多不好维护,改用策略模式实现,来代替代码中多余的if else 判断。 2.什么是策略模式? 策略模式(Strategy Pattern)是一种行为型设计模式,它允许在运行时选择算法的行为。该模式将不同的算法封装成独立的策略类,并使这些…...

unity3d————四元数概念

一、定义与表示 四元数是由一个实数部分和三个虚数部分组成,通常表示为q w xi yj zk,其中w是实数,x、y、z是实数系数,i、j、k是虚数单位,满足以下关系: i j k -1ij k,ji -kjk i&…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…...