RNN(循环神经网络)详解
1️⃣ RNN介绍
前馈神经网络(CNN,全连接网络)的流程是前向传播、反向传播和参数更新,存在以下不足:
- 无法处理时序数据:时序数据长度一般不固定,而前馈神经网络要求输入和输出的维度是固定的,不能改变
- 缺少记忆:前馈神经网络没有机制去记忆和处理
之前的输入数据
,因此无法处理像语言、股票走势或天气预报等 序列化、时间依赖性强的数据
针对前馈神经网络上述问题,RNN引入以下机制:
- 不同时间步的隐藏层之间是相连的
- 在时刻t,隐藏层的输入包括两部分,当前时刻的输入 x t x_t xt和上一个时间步隐藏层的输出 s t − 1 s_{t-1} st−1
通过这两条机制,模型能够记忆之前的输入数据,捕捉序列的上下文信息
看完这几句话你一定在想,这说的是个啥?太晕了,没关系,慢慢往下看
多说一句,RNN在很久之前就提出了,Jordan RNN于1986被提出,Elman RNN于1990年提出。
2️⃣ 原理介绍
接下来,讲讲具体原理,解决一下上面的迷惑。看下面这张图,分析一下 o t o_t ot的表达式:
- x t x_t xt是t时刻的输入
- s t s_t st是t时刻的记忆, s t = f ( U ⋅ x t + W ⋅ s t − 1 ) s_t=f(U\cdot x_t+W\cdot s_{t-1}) st=f(U⋅xt+W⋅st−1),f表示激活函数
- o t o_t ot是t时刻的输出, o t = s o f t m a x ( V ⋅ s t ) o_t=softmax(V\cdot s_t) ot=softmax(V⋅st)
看完上面这张图,对于W是什么疑惑很大,我一开始学习的时候也是这样,W到底是啥呢?来看下面这张图:
看完这张图,对于W的描述一目了然。W是在不同的时间步
隐藏层之间
递归的权重
。在RNN中,不同时间步使用相同的W,为了保证信息能够传递下去。
其实这里还有一个疑惑,按照我之前的认知,神经网络可训练的参数w和b都是在神经元上的,例如下面这张图。那么问题来了,RNN隐藏层神经元上参数是啥样的呢?
虽然下面的左图是这样画的,搞得好像参数U,W,V“漂浮在空中一般”,实际上,它们都在神经元上。准确的来说应该是右图的形式,U和W都在隐藏层神经元上,V在输出层神经元上。所以之前理解的神经元是一个神经元上只有一种参数。对于RNN来说,隐藏层神经元上有两种参数U和W。终于搞懂了,爽!
分析完RNN中参数的具体含义,来看看参数的尺寸:
U = 隐藏层神经元个数 × 输入尺寸 W = 隐藏层神经元个数 × 隐藏层神经元个数 V = 输出尺寸 × 隐藏层神经元个数 U=隐藏层神经元个数×输入尺寸\\ W=隐藏层神经元个数×隐藏层神经元个数\\ V=输出尺寸×隐藏层神经元个数 U=隐藏层神经元个数×输入尺寸W=隐藏层神经元个数×隐藏层神经元个数V=输出尺寸×隐藏层神经元个数
这样最简单的RNN就分析完了。
3️⃣ 代码
接下来看一下最简单的代码:
import torch
import torch.nn as nn# 参数设置
input_size = 2 # 每个时间步的特征维度
hidden_size = 5 # 隐层神经元数量
num_layers = 1 # RNN层数
output_size = 3 # 假设输出的维度# RNN对象实例化
rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)# U:输入到隐藏状态的权重矩阵
U = rnn.weight_ih_l0 # 输入到隐藏状态的权重矩阵
print("矩阵 U 的大小 (输入到隐藏层):", U.shape) # 应为 (hidden_size, input_size)# W:隐藏状态到隐藏状态的权重矩阵
W = rnn.weight_hh_l0 # 隐藏状态之间的递归权重矩阵
print("矩阵 W 的大小 (隐藏层到隐藏层):", W.shape) # 应为 (hidden_size, hidden_size)# V:输出层权重矩阵
# 在 PyTorch 中没有直接实现,可以添加一个 Linear 层来模拟
V_layer = nn.Linear(hidden_size, output_size) # 定义线性层
V = V_layer.weight # V 就是隐藏状态到输出层的权重矩阵
print("矩阵 V 的大小 (隐藏层到输出层):", V.shape) # 应为 (output_size, hidden_size)
输出:
矩阵 U 的大小 (输入到隐藏层): torch.Size([5, 2])
矩阵 W 的大小 (隐藏层到隐藏层): torch.Size([5, 5])
矩阵 V 的大小 (隐藏层到输出层): torch.Size([3, 5])
4️⃣ 总结
- 标准的RNN存在
梯度消失
问题,无法捕捉长时间序列的关系。因此LSTM和GRU被提出
5️⃣ 参考
- 深度学习-神经网络-循环神经网络(一):RNN(Recurrent Neural Network,循环神经网络;1990年)
- 理解循环神经网络(RNN)
相关文章:

RNN(循环神经网络)详解
1️⃣ RNN介绍 前馈神经网络(CNN,全连接网络)的流程是前向传播、反向传播和参数更新,存在以下不足: 无法处理时序数据:时序数据长度一般不固定,而前馈神经网络要求输入和输出的维度是固定的&a…...

【AI抠图整合包及教程】探索SAM 2:图像与视频分割领域的革新者
在人工智能的浩瀚星空中,Meta公司的Segment Anything Model 2(SAM 2)犹如一颗璀璨的新星,以其前所未有的图像与视频分割能力,照亮了计算机视觉领域的新航道。SAM 2不仅继承了其前身SAM在零样本分割领域的卓越表现&…...

DevExpress中文教程 - 如何使用AI模型检查HTML编辑中的语法?
DevExpress .NET MAUI多平台应用UI组件库提供了用于Android和iOS移动开发的高性能UI组件,该组件库包括数据网格、图表、调度程序、数据编辑器、CollectionView和选项卡组件等。 目前许多开发人员正在寻找多种方法将AI添加到解决方案中(这通常比想象的要…...

python包管理工具pip和conda的使用对比
python包管理工具pip和conda的使用对比 总述1. pip使用2. conda注意虚拟环境之间的嵌套,这个会导致安装包后看不到包,实际是安装到了base环境里 未完待续 总述 pip相对于conda,对应包的依赖关系管理不强,坏处是容易造成包冲突,好…...

Linux案例:DNS服务器配置
Linux案例:DNS服务器配置 实验一:正向解析 服务端配置: [rootserver ~]# setenforce 0 [rootserver ~]# nmcli c modify ens160 ipv4.method manual ipv4.addresses 192.168.70.131/24 ipv4.gateway 192.168.70.2 ipv4.dns 114.114.114.11…...
【Python】__getitem__()方法
getitem() 方法介绍 __getitem__ 方法是 Python 中的一个特殊方法(也被称为魔术方法或特殊方法),用于在类中实现索引访问对象元素的操作。这个方法允许对象实现类似于列表、字典等容器类型的索引操作。当自定义类中定义了 __getitem__ 方法时…...

《Atomic Picnic》进不去游戏解决方法
Atomic Picnic有时候会遇到进不去游戏的情况,这可能是由多种原因造成的,玩家可以采取很多解决方法,比如检查电脑配置、更新系统和驱动或验证游戏文件。 Atomic Picnic进不去游戏怎么办 检查电脑配置 查看自己的电脑配置是否达到了游戏的要求…...

学习日志007--python函数 学完再练习练
函数小练习 一、函数的概念 1.定义 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。 2.作用 函数能提高应用的模块性,和代码的重复利用率 3.定义 函数代码块以 def 关键词开头,后接函数标识符…...

DOM操作和事件监听综合练习——轮播图
下面制作一个如下图所示的轮播图(按Enter键可以控制轮播的开启和关闭,或者点击按钮“第几张”即可跳转到第几张): 下面是其HTML和CSS代码(还没有设置轮播): <!DOCTYPE html> <html …...

nodejs:下载,安装,系统环境配置,更换镜像
下载 地址:https://nodejs.org/zh-cn/download/prebuilt-installer 安装包 开始安装 安装完成 配置环境变量 将原来的用户变量-> Path D:\nodejs\node_global 【系统变量】 添加Path–>变量名:NODE_PATH-> 变量值:D: \…...

【Django】视图函数
【Django】视图函数 视图函数的本质是Python中的函数,视图函数负责处理用户的请求并返回响应,该响应可以是网页的HTML内容、重定向、404错误、XML文档、图像或者任何东西,一般在应用中的views.py编写,示例代码如下: …...

MySQL查询-补充
数据准备: -- 部门表 create table dept(deptno int primary key, -- 部门编号 主键:唯一,非空dname varchar(14), -- 部门名称loc varchar(13) -- 部门地址 );insert into dept values (10,accounting,n…...
【Python Tips】多个条件判断——一种更加简洁清晰的写法
一、引言 在python写条件判断 if 语句时,有时会遇到多种条件的真假判断考虑,比如要同时考虑A和B两个变量的True or False,只有当两者都为真,或都为假,或任意为真为假,再继续处理。此时如果用 if,…...

【Vue】简易博客项目跟做
项目框架搭建 1.使用vue create快速搭建vue项目 2.使用VC Code打开新生成的项目 端口号简单配置 修改vue.config.js文件,内容修改如下 所需库安装 npm install vue-resource --save --no-fund npm install vue-router3 --save --no-fund npm install axios --save …...
【HarmonyOS】PixelMap转化为Uri
【HarmonyOS】PixelMap转化为Uri 问题背景 鸿蒙中的PixelMap类型,其实类似于Android和IOS中的bitmap,是对图片数据信息进行描述的一种逻辑运算使用的图片类型。 而鸿蒙中的Uri类型,本质其实是带file头的文件存储地址,是用来指向…...
【架构论文-2】架构设计中存在的问题和改进方向
一、性能优化相关 当前情况 在高负载情况下,系统的响应时间出现了一定程度的延迟。特别是在业务高峰期,大量并发请求导致部分关键业务模块的处理效率降低,影响了用户体验。改进方向 计划引入性能分析工具对系统进行全面的性能剖析࿰…...
go语言中的结构体含义和用法详解
在Go语言中,结构体(struct)是一种聚合数据类型,可以将多个不同类型的数据组合成一个更复杂的类型。结构体类似于面向对象编程中的“类”,但是Go语言没有类和继承的概念,而是通过结构体和接口实现面向对象编程的特性。 1. 结构体的定义 结构体是一组字段(field)的集合…...
985研一学习日记 - 2024.11.8
一个人内耗,说明他活在过去;一个人焦虑,说明他活在未来。只有当一个人平静时,他才活在现在。 日常 1、起床 2、健身 3、LeetCode刷了2题 买卖股票的最佳时机 将最大利润拆分为每天的利润之和,仅仅收集每天的正利润…...

编写一个基于React的聊天室
前言 此前已经编写了一版后端的im,此次就用其作为服务端,可查看参考资料1 代码 使用WebStorm创建React项目 安装依赖包 PS C:\learn-demo\front\chatroom> npm installadded 183 packages, and audited 184 packages in 16s43 packages are looki…...
[前端]NodeJS常见面试题目
什么是非阻塞 I/O? Node.js 如何实现非阻塞 I/O? 非阻塞 I/O 是一种编程模式,它允许 I/O 操作(如读取文件、网络请求等)在执行时不阻塞程序的其余部分。换句话说,当一个 I/O 操作发起后,程序可以立即继续执行其他任…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...