当前位置: 首页 > news >正文

[每日一练]过去30天的用户活动

#该题目来源于力扣:

1142. 过去30天的用户活动 II - 力扣(LeetCode)

Activity 表:+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| session_id    | int     |
| activity_date | date    |
| activity_type | enum    |
+---------------+---------+
该表没有主键,它可能有重复的行。
activity_type 列是 ENUM 类型,可以取(“ open_session”,“ end_session”,“ scroll_down”,“ send_message”)四种活动类型之一。
该表显示了社交媒体网站的用户活动。
请注意,每个会话只属于一个用户。编写解决方案,统计截至 2019-07-27(含)的 30 天内每个用户的平均会话数,四舍五入到小数点后两位。只统计那些会话期间用户至少进行一项活动的有效会话。结果格式如下例所示。示例:输入:
Activity 表:
+---------+------------+---------------+---------------+
| user_id | session_id | activity_date | activity_type |
+---------+------------+---------------+---------------+
| 1       | 1          | 2019-07-20    | open_session  |
| 1       | 1          | 2019-07-20    | scroll_down   |
| 1       | 1          | 2019-07-20    | end_session   |
| 2       | 4          | 2019-07-20    | open_session  |
| 2       | 4          | 2019-07-21    | send_message  |
| 2       | 4          | 2019-07-21    | end_session   |
| 3       | 2          | 2019-07-21    | open_session  |
| 3       | 2          | 2019-07-21    | send_message  |
| 3       | 2          | 2019-07-21    | end_session   |
| 3       | 5          | 2019-07-21    | open_session  |
| 3       | 5          | 2019-07-21    | scroll_down   |
| 3       | 5          | 2019-07-21    | end_session   |
| 4       | 3          | 2019-06-25    | open_session  |
| 4       | 3          | 2019-06-25    | end_session   |
+---------+------------+---------------+---------------+
输出:
+---------------------------+ 
| average_sessions_per_user |
+---------------------------+ 
| 1.33                      |
+---------------------------+
解释:用户 1 和 2 每人在过去 30 天有 1 个会话,而用户 3 有 2 个会话。所以平均是 (1 + 1 + 2) / 3 = 1.33 。

思路流程

意思就是取分组后独一无二的session_id的综合除以user_id列的个数,条件是截至 2019-07-27(含)的 30 天内。

所以思路是:先进行时间节点的选择,在进行分组聚合,找出独一无二的user_id,然后再统计user_id的数量和计算session_id的总和,并 将这两个变量存储到新建的两个变量中,最后判断null值后计算公式,存放到自定义的数据框中。

首先是对时间节点的计算2019-07-27(含)的 30 天就是用2019-07-27-activity_date =29天,我们可以再切片中进行取值,首先设定字符串2019-07-27为日期形式并赋值给新建变量finall_time=(pd.to_datetime('2019-07-27')),然后进行finall_time-activity_date,通过代码dt.days返回天数<=29即可:

import pandas as pddef user_activity(activity: pd.DataFrame) -> pd.DataFrame:finall_time=pd.to_datetime('2019-07-27')activity=activity[(finall_time-activity['activity_date']).dt.days<=29]

 条件筛选好了,可以进行分组聚合了:

分组后只需要返回唯一的session_id值即可:

import pandas as pddef user_activity(activity: pd.DataFrame) -> pd.DataFrame:finall_time=pd.to_datetime('2019-07-27')activity=activity[(finall_time-activity['activity_date']).dt.days<=29]data=activity.groupby('user_id').agg({'session_id':'nunique'}).reset_index()return data
'''
| user_id | session_id |
| ------- | ---------- |
| 1       | 1          |
| 2       | 1          |
| 3       | 2          |
由此可见nunique实现了自动独特值聚合
'''

然后我们兴建分组变量,以便于后面的公式计算取值

import pandas as pddef user_activity(activity: pd.DataFrame) -> pd.DataFrame:finall_time=pd.to_datetime('2019-07-27')activity=activity[(finall_time-activity['activity_date']).dt.days<=29]data=activity.groupby('user_id').agg({'session_id':'nunique'}).reset_index()sum_session_id=data['session_id'].sum()count_user_id=data['user_id'].count()

注意,有可能数据框出现所有的时间都不符合规定,所以可能会出现null值,题目要求如果是null值返回0。所以当条件不符合时,我们的聚合变量sum_session_id和count_user_id为null,他们的长度肯定为0,可以通过这个特性进行条件判断公式变量的null值:

import pandas as pddef user_activity(activity: pd.DataFrame) -> pd.DataFrame:finall_time=pd.to_datetime('2019-07-27')activity=activity[(finall_time-activity['activity_date']).dt.days<=29]data=activity.groupby('user_id').agg({'session_id':'nunique'}).reset_index()return datasum_session_id=data['session_id'].sum()count_user_id=data['user_id'].count()if sum_session_id>0:result=round((sum_session_id/count_user_id),2) else:result=0

最后将新建一个数据框,将公式变量result作为数据返回到数据框中即可。新建数据框的代码:

数据框变量=pd.DataFrame({'自定义列名': [储存的数据]})

import pandas as pddef user_activity(activity: pd.DataFrame) -> pd.DataFrame:finall_time=pd.to_datetime('2019-07-27')activity=activity[(finall_time-activity['activity_date']).dt.days<=29]data=activity.groupby('user_id').agg({'session_id':'nunique'}).reset_index()return datasum_session_id=data['session_id'].sum()count_user_id=data['user_id'].count()if sum_session_id>0:result=round((sum_session_id/count_user_id),2) else:result=0result_df = pd.DataFrame({'average_sessions_per_user': [result]})return result_df

相关文章:

[每日一练]过去30天的用户活动

#该题目来源于力扣&#xff1a; 1142. 过去30天的用户活动 II - 力扣&#xff08;LeetCode&#xff09; Activity 表&#xff1a;------------------------ | Column Name | Type | ------------------------ | user_id | int | | session_id | int | …...

华为2288HV2服务器安装BCLinux8U6无法显示完整安装界面的问题处理

本文记录了华为2288HV2服务器安装BCLinux8U6无法显示完整安装界面&#xff0c;在安装过程中配置选择时&#xff0c;右侧安装按钮不可见&#xff0c;导致安装无法继续的问题处理过程。 一、问题现象 华为2288HV2服务器安装BCLinux8U6时无法显示完整的安装界面&#xff0c;问题…...

【python】OpenCV—findContours(4.6)

文章目录 1、功能描述2、代码实现3、效果展示4、完整代码5、涉及到的库函数cv2.inRange 6、参考 1、功能描述 给出一张仅含有手指的图片&#xff0c;判断图片中有多少根手指 2、代码实现 导入库函数&#xff0c;图像预处理 import numpy as np import cv2 as cv img cv.im…...

【C++】——多态

一.多态的概念 1.多态 多态(polymorphism)的概念&#xff1a;通俗的来说&#xff0c;就是多种形态。多态分为静态多态(编译时多态)和动态多态(运行时多态)&#xff0c;而我们讲的多态大部分都是动态多态。 静态多态主要就是我们前面了解过的函数模板和函数重载&#xff0c;它…...

Web前端开发--HTML语言

文章目录 前言1.介绍2.组成3.基本框架4.常见标签4.1双标签4.1.1.标题标签4.2.2段落标签4.1.3文本格式化标签4.1.4超链接标签4.1.5视频标签4.1.6 音频标签 4.2单标签4.2.1换行标签和水平线标签4.2.2 图像标签 5.表单控件结语 前言 生活中处处都有网站&#xff0c;无论你是学习爬…...

AI驱动的网络空间智能对抗;无人集群系统,多体协同算法创新和故障智能预警

目录 AI驱动的网络空间智能对抗 认知与认知域安全 认知攻击-杀伤链 PPDR主动安全框架 短视频内容分析 不良视频鉴别:人工+智能 舆情监测 非介入式监测 大模型对新闻内容审查与播报 无人集群系统,多体协同算法创新和故障智能预警 一、无人集群系统概述 二、多体协…...

推荐一款SSD硬盘优化器:Auslogics SSD Optimizer Pro

SSD Optimizer Pro 是一款专为优化固态硬盘 (SSD) 性能而设计的专业工具&#xff0c;旨在最大化 SSD 的效率&#xff0c;延长硬盘使用寿命。凭借简便的操作界面和强大的优化功能&#xff0c;SSD Optimizer Pro 可以让用户充分利用 SSD 的优势&#xff0c;从而获得更高的系统性能…...

k8s-service、endpoints、pod之间是怎么进行网络互通的

k8s-service、endpoints、pod之间是怎么进行网络互通的 1、service2、endpoints3、service、endpoints、pod通信图4、不通服务pod内部间访问 1、service 在K8S中&#xff0c;Service是一种抽象&#xff0c;定义了一组Pod的逻辑集合和访问这些Pod的策略。首先&#xff0c;我们需…...

Go语言开发商城管理后台-GoFly框架商城插件已发布 需要Go开发商城的朋友可以来看看哦!

温馨提示&#xff1a;我们分享的文章是给需要的人&#xff0c;不需要的人请绕过&#xff0c;文明浏览&#xff0c;误恶语伤人&#xff01; 前言 虽然现在做商城的需求不多&#xff0c;但有很多项目中带有商城功能&#xff0c;如社区医院系统有上服务套餐、理疗产品需求、宠物…...

【51单片机】UART串口通信原理 + 使用

学习使用的开发板&#xff1a;STC89C52RC/LE52RC 编程软件&#xff1a;Keil5 烧录软件&#xff1a;stc-isp 开发板实图&#xff1a; 文章目录 串口硬件电路UART串口相关寄存器 编码单片机通过串口发送数据电脑通过串口发送数据控制LED灯 串口 串口是一种应用十分广泛的通讯接…...

高性能分布式缓存Redis-高可用部署

一、主从架构搭建 为什么要进行主从架构搭建&#xff0c;一台redis不行吗&#xff1f; ①、持久化后的数据只在一台机器上&#xff0c;因此当硬件发生故障时&#xff0c;比如主板或CPU坏了&#xff0c;这时候无法重启服务器&#xff0c;有什么办法可以保证服务器发生故障时数…...

如何使用XSL-FO生成PDF格式的电子发票的技术博文示例

目录 使用 XSL-FO 生成电子发票 PDF&#xff1a;从布局设计到优化为什么选择 XSL-FO&#xff1f;1. 初始设置2. 标题区块3. 买卖方信息4. 商品明细表格5. 合计信息6. 优化代码结构与布局7. 生成 PDF 文件8. 示例总结 使用 XSL-FO 生成电子发票 PDF&#xff1a;从布局设计到优化…...

TDengine 签约山东港,赋能港口数字化转型

随着全球港口物流数字化进程的加速&#xff0c;港口运营面临日益复杂的数据管理挑战&#xff0c;从能源管理、设备监控到运营安全保障&#xff0c;各类数据需要及时存储并高效分析。山东港在信息化建设过程中&#xff0c;数字化综合管理平台的性能和查询功能一度受到瓶颈制约。…...

基于YOLO11/v10/v8/v5深度学习的煤矿传送带异物检测系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...

mysql-workbench 导入csv格式数据报错:Unhandled exception: Could not determine delimiter

xlsx文件中第二行某个单元格有换行符&#xff0c;csv文件中用双引号包起来了&#xff0c;但是python 在采样的时候&#xff0c;只读了前两行&#xff0c;readline可不认识csv的规则。csv文件可以识别双引号包起来的换行符是单元格内部的换行&#xff0c;python的readline识别不…...

使用Python简单实现客户端界面

服务端实现 import threading import timeimport wx from socket import socket, AF_INET, SOCK_STREAMclass LServer(wx.Frame):def __init__(self):wx.Frame.__init__(self, None, id1002, titleL服务器端界面, poswx.DefaultPosition, size(400, 450))# 窗口中添加面板pl …...

15分钟学 Go 第 43 天:前端与Go的结合

第43天&#xff1a;前端与Go的结合 目标&#xff1a;了解Go如何与前端交互&#xff0c;前端使用Vue.js 在现代Web开发中&#xff0c;Go语言常用于后端开发&#xff0c;而Vue.js是一个流行的前端框架&#xff0c;用于构建用户界面。结合二者&#xff0c;可以构建高效、可维护的…...

解决SRS推送webrtc流卡顿问题

目录 1.问题描述2.原因分析3.ffmpeg去掉B帧的方法3.1 命令行推流3.2 ffmpeg源码推流 1.问题描述 使用ffmpeg通过rtmp协议推流给SRS&#xff0c;然后浏览器通过webrtc拉取播放流&#xff0c;经多次测试发现webrtc播放流总是卡顿&#xff0c;而拉取rtmp流是正常的。 2.原因分析…...

GDPU Andriod移动应用 Broadcast Receiver

聆听广播&#xff0c;跟着节拍吧。 计时器 新建一个名为PhoneStateMonitor的工程&#xff1b; 实现一个应用运行时长的计时器&#xff0c;并在界面上刷新计数器&#xff0c;要求包括&#xff1a; &#xff08;1&#xff09;在Layout中包含两个TextView控件&#xff0c;横向分…...

CSP/信奥赛C++刷题训练:经典例题 - 栈(1):洛谷P3056 :[USACO12NOV] Clumsy Cows S

CSP/信奥赛C刷题训练&#xff1a;经典例题 - 栈&#xff08;1&#xff09;&#xff1a;洛谷P3056 &#xff1a;[USACO12NOV] Clumsy Cows S 题目描述 Bessie the cow is trying to type a balanced string of parentheses into her new laptop, but she is sufficiently clums…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...