Python 数据可视化详解教程
Python 数据可视化详解教程
数据可视化是数据分析中不可或缺的一部分,它通过图形化的方式展示数据,帮助我们更直观地理解和分析数据。Python 作为一种强大的编程语言,拥有丰富的数据可视化库,如 Matplotlib、Seaborn、Plotly 和 Bokeh 等。本文将详细介绍 Python 数据可视化的基本概念、常用库、实用技巧和高级应用,帮助你掌握数据可视化的核心技能。
1. 数据可视化的基本概念
数据可视化是将数据转化为图形或图表的过程,以便更容易地发现数据中的模式、趋势和异常值。通过可视化,复杂的数据集可以变得更加易于理解和分析。
1.1 数据可视化的目的
- 揭示数据模式:通过图形化展示,帮助识别数据中的趋势和模式。
- 比较数据:便于比较不同数据集或变量之间的关系。
- 简化信息传达:将复杂的数据以简单的图形形式展示,便于沟通和分享。
2. Python 数据可视化库概述
Python 提供了多个强大的数据可视化库,以下是一些常用的库:
- Matplotlib:最基础的绘图库,功能强大,灵活性高。
- Seaborn:基于 Matplotlib,提供更美观的统计图形。
- Plotly:支持交互式图表,适合 Web 应用。
- Bokeh:用于创建交互式可视化,适合大数据集。
- Altair:基于 Vega 和 Vega-Lite 的声明式可视化库。
3. Matplotlib 使用教程
3.1 安装 Matplotlib
首先,确保你已经安装了 Matplotlib。可以使用以下命令进行安装:
pip install matplotlib
3.2 基本绘图
以下是一个使用 Matplotlib 进行基本绘图的示例:
import matplotlib.pyplot as plt
import numpy as np# 生成数据
x = np.linspace(0, 10, 100)
y = np.sin(x)# 创建图形
plt.figure(figsize=(10, 5))
plt.plot(x, y, label='正弦波', color='blue', linestyle='-', linewidth=2)# 添加标题和标签
plt.title('正弦波图')
plt.xlabel('x 值')
plt.ylabel('y 值')
plt.legend()# 显示图形
plt.grid()
plt.show()
3.3 保存图形
可以将生成的图形保存为文件,例如 PNG 或 PDF 格式:
plt.savefig('sine_wave.png', dpi=300) # dpi 控制图像分辨率
3.4 常见图形类型
3.4.1 条形图
条形图用于比较不同类别的数据:
categories = ['A', 'B', 'C', 'D']
values = [10, 20, 15, 25]plt.bar(categories, values, color='orange')
plt.title('条形图示例')
plt.xlabel('类别')
plt.ylabel('值')
plt.show()
3.4.2 散点图
散点图用于显示两个变量之间的关系:
x = np.random.rand(50)
y = np.random.rand(50)plt.scatter(x, y, color='green', alpha=0.5)
plt.title('散点图示例')
plt.xlabel('X 轴')
plt.ylabel('Y 轴')
plt.show()
3.4.3 饼图
饼图用于显示各部分占整体的比例:
sizes = [15, 30, 45, 10]
labels = ['A', 'B', 'C', 'D']
colors = ['gold', 'lightcoral', 'lightskyblue', 'lightgreen']plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=140)
plt.axis('equal') # 使饼图为圆形
plt.title('饼图示例')
plt.show()
4. Seaborn 使用教程
4.1 安装 Seaborn
如果你还没有安装 Seaborn,可以使用以下命令:
pip install seaborn
4.2 Seaborn 基础
Seaborn 是基于 Matplotlib 的高级可视化库,提供了更美观和简化的绘图接口。
4.2.1 统计图
Seaborn 提供了许多用于统计可视化的函数,例如:
import seaborn as sns
import pandas as pd# 创建示例数据
data = pd.DataFrame({'类别': ['A', 'B', 'C', 'D'],'值': [10, 20, 15, 25]
})# 使用 Seaborn 绘制条形图
sns.barplot(x='类别', y='值', data=data, palette='Blues')
plt.title('Seaborn 条形图示例')
plt.show()
4.2.2 线性回归图
Seaborn 可以轻松绘制线性回归图:
# 生成随机数据
tips = sns.load_dataset('tips')# 绘制线性回归图
sns.regplot(x='total_bill', y='tip', data=tips)
plt.title('线性回归图示例')
plt.show()
5. Plotly 使用教程
5.1 安装 Plotly
安装 Plotly 的命令如下:
pip install plotly
5.2 创建交互式图表
Plotly 允许创建交互式图表,适合 Web 应用:
import plotly.express as px# 创建示例数据
df = px.data.iris()# 绘制散点图
fig = px.scatter(df, x='sepal_width', y='sepal_length', color='species', title='鸢尾花散点图')
fig.show()
6. Bokeh 使用教程
6.1 安装 Bokeh
使用以下命令安装 Bokeh:
pip install bokeh
6.2 创建交互式图表
Bokeh 适合用于创建大规模的数据可视化:
from bokeh.plotting import figure, show
from bokeh.io import output_notebookoutput_notebook()# 创建图形
p = figure(title='Bokeh 示例', x_axis_label='X 轴', y_axis_label='Y 轴')# 添加线条
p.line(x, y, legend_label='线条', line_width=2)
show(p)
7. 数据可视化的最佳实践
- 选择合适的图表类型:根据数据的特性选择合适的图表类型。
- 简洁明了:避免过于复杂的图形,确保信息传达清晰。
- 使用颜色和标签:合理使用颜色和标签,提高可读性。
- 考虑受众:根据受众的需求和背景调整可视化的复杂程度。
8. 高级数据可视化技巧
8.1 使用 Matplotlib 自定义样式
Matplotlib 允许用户自定义样式以增强图形的美观性:
plt.style.use('seaborn-darkgrid')
8.2 动态可视化
使用 Plotly 和 Bokeh,可以创建动态可视化,例如动画图表和交互式仪表板。
8.3 多子图布局
使用 plt.subplots() 可以在同一图形中绘制多个子图:
fig, axs = plt.subplots(2, 2, figsize=(10, 10))
axs[0, 0].bar(categories, values)
axs[0, 1].scatter(x, y)
axs[1, 0].pie(sizes, labels=labels)
axs[1, 1].plot(x, y)
plt.show()
9. 总结
数据可视化是数据分析的重要组成部分,Python 提供了多种强大的库来满足不同的可视化需求。通过本文的介绍,你应该能够熟练使用 Matplotlib、Seaborn、Plotly 和 Bokeh 等库进行数据可视化。希望你能在实际项目中应用这些知识,创造出更优秀的数据可视化作品!
如果你有任何问题或建议,欢迎在评论区留言讨论!
相关文章:
Python 数据可视化详解教程
Python 数据可视化详解教程 数据可视化是数据分析中不可或缺的一部分,它通过图形化的方式展示数据,帮助我们更直观地理解和分析数据。Python 作为一种强大的编程语言,拥有丰富的数据可视化库,如 Matplotlib、Seaborn、Plotly 和 …...
springboot集成opencv开源计算机视觉库
最近项目需要用到opencv,网上看到很多资料都是下载安装并且引入jar包与dll文件,感觉很麻烦,不是我想要的,于是花时间折腾了下,不需要任何安装与引入jar包与dll文件,简单方便,快速上手。 先说说…...
CCF ChinaOSC |「开源科学计算与系统建模openSCS专题分论坛」11月9日与您相约深圳
2024年11月9日至10日,以“湾区聚力 开源启智”为主题的2024年中国计算机学会中国开源大会(CCF ChinaOSC)将在深圳召开。大会将汇聚国内外学术界、顶尖科技企业、科研机构及开源社区的精英力量,共同探索人工智能技术和人类智慧的无…...
2024年11月8日上海帆软用户大会
2024年11月8日上海帆软用户大会 2024年11月8日,上海成功举办了帆软用户大会,主题为“数字聚力,绽放新机”。大会汇聚了众多行业专家和企业代表,共同探讨数字化转型和商业智能领域的最新趋势和实践。 大会亮点: 专家…...
信息泄露漏洞一文速通
文章目录 信息泄露漏洞一文速通敏感信息の概念敏感信息の分类企业敏感信息用户敏感信息站点敏感信息 如何挖掘信息泄露漏洞?信息泄露风险清单(checklist)未授权访问类文件与数据泄露开发与调试信息泄露公共配置文件泄露其他敏感信息泄露点 威…...
Android 启动时应用的安装解析过程《二》
上一篇内容说到InitAppsHelper这个类的initSystemApps函数,只说了一下几个重要参数的来源还没展开,这里继续,有兴趣的可以看链接: Android 启动时应用的安装解析过程《一》 一、系统应用的扫描安装 /*** Install apps from system dirs.*/Gu…...
智谱AI:ChatGLM强大的生成式语言模型
目录 智谱AI:ChatGLM强大的生成式语言模型 一、ChatGLM的定义与特点 二、ChatGLM的应用场景 三、举例说明 四、注意事项 智谱AI:ChatGLM强大的生成式语言模型 它通过对话的方式能够生成自然流畅的文本,这一特性使其在多个领域都有广泛的应用潜力,特别是在智能对话和智能…...
git tag
已经发布了 v1.0 v2.0 v3.0 三个版本,这个时候,我突然想不改现有代码的前提下,在 v2.0 的基础上加个新功能,作为 v4.0 发布。就可以检出 v2.0 的代码作为一个 branch ,然后作为开发分支。 要查看仓库中的所有标签 gi…...
Golang--反射
1、概念 反射可以做什么? 反射可以在运行时动态获取变量的各种信息,比如变量的类型,类别等信息如果是结构体变量,还可以获取到结构体本身的信息(包括结构体的字段、方法)通过反射,可以修改变量的值,可以调用关联的方法…...
ABAP:SET CURSOR FIELD设置鼠标焦点
SET CURSOR FIELD <字段名>:设置鼠标焦点到该字段 SET CURSOR 设置到鼠标焦点列还是行 SET CURSOR LINE 设置鼠标焦点到行 GET CURSOR field <字段名> :这个相对应的获取鼠标焦点得到的字段...
【专题】2024年全球生物医药交易报告汇总PDF洞察(附原数据表)
原文链接:https://tecdat.cn/?p38191 在当今复杂多变的全球经济环境下,医药行业正面临着诸多挑战与机遇。2024 年,医药行业的发展态势备受关注。 一方面,全球生物医药交易活跃,2021 - 2023 年的交易中,已…...
LabVIEW气体检测系统
随着工业化进程的加速,环境污染问题愈加严峻,尤其是有害气体的排放对人类生存环境构成了严重威胁。为了更好地监测这些有害气体,开发一个高效、准确且易于操作的气体检测系统显得尤为重要。LabVIEW软件开发的气体检测系统,采用激光…...
LeetCode78. 子集(2024秋季每日一题 58)
给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的 子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入:nums [1,2,3] 输出:[[],[1],[2],[1,2],[3…...
推荐一款功能强大的视频修复软件:Apeaksoft Video Fixer
Apeaksoft Video Fixer是一款功能强大的视频修复软件,专门用于修复损坏、不可播放、卡顿、画面失真、黑屏等视频问题。只需提供一个准确且有效的样本视频作为参考,该软件就能将受损视频修复到与样本视频相同的质量。该软件目前支持MP4、MOV、3GP等格式的…...
Golang--网络编程
1、概念 网络编程:把分布在不同地理区域的计算机与专门的外部设备用通信线路互连成一个规模大、功能强的网络系统,从而使众多的计算机可以方便地互相传递信息、共享数据、软件、数据信息等资源。 客户端(Client) 客户端是请求服务…...
区块链技术在数字版权管理中的应用
💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 区块链技术在数字版权管理中的应用 区块链技术在数字版权管理中的应用 区块链技术在数字版权管理中的应用 引言 区块链技术概述 …...
WPS单元格重复值提示设置
选中要检查的所有的单元格 设置提示效果 当出现单元格值重复时,重复的单元格就会自动变化 要修改或删除,点击...
Scala 的包及其导入
Scala使用包来创建用于模块化程序的命名空间。通过在Scala文件的顶部声明一个或多个包名称可以创建包,另一种声明包的方式是使用0,这种方式可以嵌套包,并且提供更好的范围与封装控制。对于包的导入,Scala与Java的区别之一便是&…...
架构师备考-概念背诵(软件工程)
软件工程 软件开发生命周期: 软件定义时期:包括可行性研究和详细需求分析过程,任务是确定软件开发工程必须完成的总目标,具体可分成问题定义、可行性研究、需求分析等。软件开发时期:就是软件的设计与实现,可分成概要设计、详细设计、编码、测试等。软件运行和维护:就是…...
DIP switch是什么?
**DIP开关(DIP switch),也称为指拨开关,是一种可以人工调整的开关,通常以标准双列直插封装(DIP)的形式出现。**DIP开关一般设计在印刷电路板上,配合其他电子元件使用,…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
