当前位置: 首页 > news >正文

讨论一个mysql事务问题

最近在阅读一篇关于隔离级别的文章,文章中提到了一种场景,我们下面来分析一下。

文章目录

  • 1、实验环境
  • 2、两个实验的语句执行顺序
  • 3、关于start transaction和start transaction with consistent snapshot
  • 4、实验结果解释
    • 4.1、实验1
    • 4.2、实验2
    • 4.3、调整实验1,达到和实验2一样的效果

1、实验环境

版本:5.7.30-log
隔离级别:RR

2、两个实验的语句执行顺序

在这里插入图片描述

3、关于start transaction和start transaction with consistent snapshot

这篇文章讨论的问题是start transaction和start transaction with consistent snapshot这两条命令的区别。
start transaction:开启事务,但只有发生第一条和InnoDB有关系的sql语句时,事务才开始生效。也就是说单独执行start transaction并不会开启事务,只有执行一条sql语句才可以,select语句都行。
start transaction with consistent snapshot:开启一致性快照读,这个命令的含义就相当于执行start transaction后紧接着执行一条select,意思是立即开启事务。

4、实验结果解释

能理解标题3的内容,上面的案例就很好理解了,我们来讨论一下。

4.1、实验1

实验1中,事务A事务B的语句执行顺序为:
事务B:select
事务A:start transaction(此时,事务A并没有开启事务)
事务B:insert(事务B是一个自动事务,执行完即提交)
事务A:select(真正开启事务)
此时事务A是能查询到事务B新增的数据的。因为在事务A真正开启事务之前,事务B已经提交了,事务A开启事务时,肯定是能读取到其他事务已提交的结果的

4.2、实验2

实验2中,事务A事务B的语句执行顺序为:
事务B:select
事务A:start transaction with consistent snapshot(事务A开启事务)
事务B:insert(事务B是一个自动事务,执行完insert即提交)
事务A:select
此时事务A就不能读取到事务B新增的数据,这是InnoDB不可重复读所做的事情

4.3、调整实验1,达到和实验2一样的效果

实验1,调整一下事务A语句的执行顺序,就不会读取到事务B的新增数据了。
事务B:select
事务A:start transaction(此时,事务A并没有开启事务)
事务A:select(真正开启事务)
事务B:insert(事务B是一个自动事务,执行完insert即提交)
事务A:select(事务A事务B执行insert前已经开启事务,因为RR隔离级别下不可重复读的原因,所以就读取不到事务B新增的数据)

相关文章:

讨论一个mysql事务问题

最近在阅读一篇关于隔离级别的文章,文章中提到了一种场景,我们下面来分析一下。 文章目录 1、实验环境2、两个实验的语句执行顺序3、关于start transaction和start transaction with consistent snapshot4、实验结果解释4.1、实验14.2、实验24.3、调整实…...

pytest插件精选:提升测试效率与质量

pytest作为Python生态系统中备受推崇的测试框架,以其简洁、灵活和可扩展性赢得了广泛的认可。通过合理使用pytest的各种插件,可以显著提升测试效率、增强测试的可读性和可维护性。 pytest-sugar:提升测试体验 pytest-sugar是一款增强版的py…...

HTB:Sightless[WriteUP]

目录 连接至HTB服务器并启动靶机 使用nmap对靶机TCP端口进行开放扫描 继续使用nmap对靶机开放的TCP端口进行脚本、服务扫描 首先尝试对靶机FTP服务进行匿名登录 使用curl访问靶机80端口 使用浏览器可以直接访问该域名 使用浏览器直接访问该子域 Getshell 横向移动 查…...

国产化浪潮下,高科技企业如何选择合适的国产ftp软件方案?

高科技企业在数字化转型和创新发展中,数据资产扮演着越来越重要的角色。在研发过程中产生的实验数据、设计文档、测试结果等,专利、商标、版权之类的创新成果等,随着信息量急剧增加和安全威胁的复杂化,传统的FTP软件已经不能满足这…...

自注意力机制

当输入一系列向量,想要考虑其中一个向量与其他向量之间的关系,决定这个向量最后的输出 任意两个向量之间的关系计算 计算其他向量对a1的关联性 多头注意力机制 图像也可以看成一系列的向量,交给自注意力机制处理,CNN是特殊的自注意…...

抽象工厂模式详解

1. 引言 1.1 设计模式概述 设计模式(Design Patterns)是软件开发中解决常见问题的一种最佳实践。它们通过总结经验,提供了一套被验证有效的代码结构和设计原则,帮助开发者提高代码的可维护性、可重用性和可扩展性。 设计模式主…...

【Linux】软硬链接和动静态库

🔥 个人主页:大耳朵土土垚 🔥 所属专栏:Linux系统编程 这里将会不定期更新有关Linux的内容,欢迎大家点赞,收藏,评论🥳🥳🎉🎉🎉 文章目…...

HarmonyOS入门 : 获取网络数据,并渲染到界面上

1. 环境搭建 开发HarmonyOS需要安装DevEco Studio,下载地址 : https://developer.huawei.com/consumer/cn/deveco-studio/ 2. 如何入门 入门HarmonyOS我们可以从一个实际的小例子入手,比如获取网络数据,并将其渲染到界面上。 本文就是基于…...

【贪心】【哈希】个人练习-Leetcode-1296. Divide Array in Sets of K Consecutive Numbers

题目链接:https://leetcode.cn/problems/divide-array-in-sets-of-k-consecutive-numbers/description/ 题目大意:给出一个数组nums[]和一个数k,求nums[]能否被分成若干个k个元素的连续的子列。 思路:比较简单,贪心就…...

【数据库实验一】数据库及数据库中表的建立实验

目录 实验1 学习RDBMS的使用和创建数据库 一、 实验目的 二、实验内容 三、实验环境 四、实验前准备 五、实验步骤 六、实验结果 七、评价分析及心得体会 实验2 定义表和数据库完整性 一、 实验目的 二、实验内容 三、实验环境 四、实验前准备 五、实验步骤 六…...

Web服务nginx基本实验

安装软件: 启动服务: 查看Nginx服务器的网络连接信息,监听的端口: 查看默认目录: 用Windows访问服务端192.168.234.111的nginx服务:(防火墙没有放行nginx服务,访问不了) …...

Ubuntu实现双击图标运行自己的应用软件

我们知道在Ubuntu上编写程序,最后编译得到的是一个可执行文件,大致如下 然后要运行的时候在终端里输入./hello即可 但是这样的话感觉很丑很不方便,下边描述一种可以类似Windows上那种双击运行的实现方式。 我们知道Ubuntu是有一些自带的程序…...

js id字符串转数组

将一个逗号分隔的字符串(例如 "12,123,213,")转换为一个 JavaScript 数组,并去除多余的逗号,可以使用以下几种方法。这里我将展示几种常见的方式: 方法 1: 使用 split 和 filter 你可以使用 split 方法将字…...

《手写Spring渐进式源码实践》实践笔记(第十八章 JDBC功能整合)

文章目录 第十八章 JDBC功能整合背景技术背景JDBC JdbcTemplate关键特性 用法示例业务背景 目标设计实现代码结构类图实现步骤 测试事先准备属性配置文件测试用例测试结果: 总结 第十八章 JDBC功能整合 背景 技术背景 JDBC JDBC(Java Database Conne…...

边缘计算在智能交通系统中的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 边缘计算在智能交通系统中的应用 边缘计算在智能交通系统中的应用 边缘计算在智能交通系统中的应用 引言 边缘计算概述 定义与原…...

HTML5+css3(浮动,浮动的相关属性,float,解决浮动的塌陷问题,clear,overflow,给父亲盒子加高度,伪元素)

浮动的相关属性 以下使浮动的常用属性值: float: 设置浮动 以下属性: left : 设置左浮动 right : 设置右浮动 none :不浮动,默认值clear 清除浮动 清除前面兄弟元素浮动元素的响应 以下属性: left &…...

【C++ 滑动窗口】2134. 最少交换次数来组合所有的 1 II

本文涉及的基础知识点 C算法:滑动窗口及双指针总结 LeetCode2134. 最少交换次数来组合所有的 1 II 交换 定义为选中一个数组中的两个 互不相同 的位置并交换二者的值。 环形 数组是一个数组,可以认为 第一个 元素和 最后一个 元素 相邻 。 给你一个 二…...

使用 PyTorch 实现并测试 AlexNet 模型,并使用 TensorRT 进行推理加速

本篇文章详细介绍了如何使用 PyTorch 实现经典卷积神经网络 AlexNet,并利用 Fashion-MNIST 数据集进行训练与测试。在训练完成后,通过 TensorRT 进行推理加速,以提升模型的推理效率。 本文全部代码链接:全部代码下载 环境配置 为了保证代码在 GPU 环境下顺利运行,我们将…...

Python 数据可视化详解教程

Python 数据可视化详解教程 数据可视化是数据分析中不可或缺的一部分,它通过图形化的方式展示数据,帮助我们更直观地理解和分析数据。Python 作为一种强大的编程语言,拥有丰富的数据可视化库,如 Matplotlib、Seaborn、Plotly 和 …...

springboot集成opencv开源计算机视觉库

最近项目需要用到opencv,网上看到很多资料都是下载安装并且引入jar包与dll文件,感觉很麻烦,不是我想要的,于是花时间折腾了下,不需要任何安装与引入jar包与dll文件,简单方便,快速上手。 先说说…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...