当前位置: 首页 > news >正文

Python中的常见配置文件写法

在软件开发过程中,开发者常常需要利用一些固定的参数或常量。对于这些相对恒定且频繁使用的元素,一种常见的做法是将它们集中存储在一个特定的文件中,以避免在多个模块代码中重复定义,从而维护核心代码的清晰度和整洁性。

具体而言,我们可以将这些固定元素编写成一个Python文件,例如命名为settings.pyconfig.py。这种做法的优势在于,它允许在同一项目内部通过import语句直接引用该文件中的配置项。然而,当需要在非Python平台上共享这些配置信息时,仅依赖.py文件作为配置存储方式则显得不够灵活。在此情境下,选择一种更为通用的配置文件格式显得尤为重要。

目前,市场上存在多种广泛使用和流行的配置文件格式,主要包括ini、json、toml、yaml以及xml等。这些配置文件类型均支持通过标准库或第三方库进行解析,从而在不同的编程环境和平台上实现配置信息的共享与利用。


ini

ini 即 Initialize 初始化之意,早期是在 Windows 上配置文件的存储格式。ini 文件的写法通俗易懂,往往比较简单,通常由节(Section)、键(key)和值(value)组成,就像以下形式:

[localdb]
host     = 127.0.0.1
user     = root
password = 123456
port     = 3306
database = mysql

 Python 本身内置的 configparser 标准库,我们直接就可以用来对 ini 文件进行解析。如我们将上述内容保存在一个名为 db.ini 的文件中,然后使用 read() 方法来进行解析和读取,最后通过 items() 方法来获取指定节点下的所有键值对。

>>> from configparser import ConfigParser
>>> cfg = ConfigParser()
>>> cfg.read("/Users/Bobot/db.ini")
['/Users/Bobot/db.ini']
>>> cfg.items("localdb")
[('host', '127.0.0.1'), ('user', 'root'), ('password', '123456'), ('port', '3306'), ('database', 'mysql')]

需要注意的是,configparser 默认将值以字符串的形式呈现,所以这也就是为什么我们在 db.ini 文件中没有加引号而是直接将字面量写在上面的原因。

获取到键值对后,我其实直接就将其转换成字典,然后通过解包的方式进行穿参,保持代码简洁:

#!pip install pymysql
import pymysql
from configparser import ConfigParsercfg = ConfigParser()
cfg.read("/Users/Bobot/db.ini")
db_cfg = dict(cfg.items("localdb"))con = pymysql.connect(**db_cfg)

json

json 格式可以说是我们常见的一种文件形式了,也是目前在互联网较为流行的一种数据交换格式。除此之外,json 有时也是配置文件的一种。

比如 npm(JavaScript 包管理工具类似 Python 的 pip)、以及微软出品的目前被广泛使用的 VSCode 编辑器,都使用 json 编写配置参数。

和 configparser 一样,Python 也内置了 json 标准库,可以通过 load() 和 loads() 方法来导入文件式和字符串的 json 内容。

{"localdb":{"host": "127.0.0.1","user": "root","password": "123456","port": 3306,"database": "mysql"}
}

我们将上述内容保存为 db.json 后进行读取和解析,json 库读取 json 文件相对简单容易,而且很容易解析成 Python 的字典对象。

>>> import json
>>> from pprint import pprint
>>> 
>>> with open('/Users/Bobot/db.json') as j:
...     cfg = json.load(j)['localdb']
... 
>>> pprint(cfg)
{'database': 'mysql','host': '127.0.0.1','password': '123456','port': 3306,'user': 'root'}

使用 json 文件配置的缺点就是语法标准严格限制,为人所诟病之一的就是无法在当中写注释,除非采取 json 类型的其他超集作为替代方案(VSCode 中能写注释的 json 参数配置文件便是代替方案的一种);同时存在嵌套过深的问题,容易导致出错,不宜用来写过长或复杂的参数配置信息。


toml

toml 格式(或 tml 格式)是 Github 联合创始人 Tom Preston-Werner 所提出的一种配置文件格式。根据维基百科的资料,toml 最开始提出时是在 2013年7月份,距今已有七年时间;它在某些方面也与后面要谈到的 yaml 文件有些类似,但如果当你知道 yaml 的规范有几十页(没有错,真的就是几十页……)的时候,可能你真的就不太愿意去写那么复杂的配置文件,toml 格式则倒是个不错的选择。

toml 格式大致如下:

从这里可以看出 toml 有点类似于前面所讲的 ini 文件。但是它比 ini 扩展了更多的内容。

在样例图片中我们可以看到,除了基本的字符串以外,例如时间戳、布尔值、数组等都进一步支持,而且样式和 Python 的原生写法十分类似。

当然这里不会过多介绍 toml 格式的一些规范说明,有人已经对官方的规范文档进行了翻译,有兴趣的朋友可以直接查阅。

这么契合 Python 方式的配置文件类型已经有开发者造出了相应的「轮子」,目前在 Github 上 Stars 数最多的是则是 uiri/toml 的版本,不过该版本仅通过了 v0.5 版本 toml 规范,但在使用上还是蛮简洁的,我们可以通过 pip 命令进行安装

pip install toml

 该库的解析方式很简单,也有点类似于 json 库的解析用法,即通过load() 或 loads() 来进行解析;同理转换并导出也是同样类似的用法。

比如我们现在将以下内容写入到 config.toml 中:

[mysql]
host     = "127.0.0.1"
user     = "root"
port     = 3306
database = "test"[mysql.parameters]pool_size = 5charset   = "utf8"[mysql.fields]pandas_cols = [ "id", "name", "age", "date"]

紧接着我们就可以通过 toml 库中的 load() 方法来进行读取:

>>> import toml
>>> import os
>>> from pprint import pprint
>>> cfg = toml.load(os.path.expanduser("~/Desktop/config.toml"))
>>> pprint(cfg)
{'mysql': {'database': 'test','fields': {'pandas_cols': ['id', 'name', 'age', 'date']},'host': '127.0.0.1','parameters': {'charset': 'utf8', 'pool_size': 5},'port': 3306,'user': 'root'}}

可以看到 toml 文件被间接地转化成了字典类型,当然这也就是 json 版的写法(将单引号替换成双引号即可),方便我们后续调用或者传参。


yaml

yaml 格式(或 yml 格式)是目前较为流行的一种配置文件,它早在 2001 由一个名为 Clark Evans 的人提出;同时它也是目前被广泛使用的配置文件类型,典型的就是 Docker 容器里的 docker-compose.yml 配置文件,如果经常使用 Docker 进行部署的人对此不会陌生。

yaml 文件的设计从 Python、XML 等地方获取灵感,所以在使用时能很清楚地看到这些部分的影子。

在上一节 toml 内容里我曾提到,yaml 的规范内容可以说是冗长和复杂,足足有80页之多。

感兴趣的朋友可以再自行了解相关用法。

YAML 官方早已经提供了相应的 Python 库进行支持,即 PyYAML;当然也同样需要我们事先进行安装:

pip install pyyaml

同 json 库和 toml 库一样,通过 load() 方法来进行加载。

需要注意的是,使用 load() 方法会存在一定的安全隐患,从思科 Talos 的这份报告中我们可以看到,如果加载了未知或不信任的 yaml 文件,那么有可能会存在被攻击的风险和网络安全隐患,因为它能够直接调用相应的 Python 函数来执行为攻击者所需要的命令,比如说在 yaml 文件中写入这么一段:

# 使用Linux和macOS的朋友不要轻易尝试
!!python/object/apply:os.system ["rm -rf /"]

因此最好是使用 safe_load() 来代替 load() 方法。

这和 Python 内置的 string 标准库中 Template 类的 substitute() 模板方法一样存在着同样的安全隐患,所以使用 safe_substitute() 来替代是一样的道理。

如我们现在将之前的一些配置信息写入 config.yaml 文件中:

mysql:host: "127.0.0.1"port: 3306user: "root"password: "123456"database: "test"parameter:pool_size: 5charset: "utf8"fields:pandas_cols: - id- name- age- date

然后我们通过 safe_load() 方法进行解析:

>>> import os
>>> from pprint import pprint
>>> 
>>> with open(os.path.expanduser("~/config.yaml"), "r") as config:
...     cfg = yaml.safe_load(config)
... 
>>> pprint(cfg)
{'mysql': {'database': 'test','fields': {'pandas_cols': ['id', 'name', 'age', 'date']},'host': '127.0.0.1','parameter': {'charset': 'utf8', 'pool_size': 5},'password': '123456','port': 3306,'user': 'root'}}

可以看到最后结果和前面的 toml 库的解析结果基本一致。


结语

以上综述了若干主流且普遍采用的配置文件类型及其对应的Python读取方法。然而,部分读者或许已注意到,其中并未涵盖XML格式的配置文件。尽管XML配置文件在Java系编程语言环境中更为常见,但其可读性往往令人望而却步。对于不熟悉XML文件的读者而言,一个直观的理解方式是,通过Chrome浏览器访问任意网站,随后按F12键进入开发者工具,观察其中繁复的HTML元素,这些元素在某种程度上可视作XML文件的缩影。

除了上述主流配置文件类型之外,还存在如.cfg、.properties等格式的文件,它们同样可作为配置文件使用。甚至如前文所述,单独采用一个.py文件来编写各类配置信息,并以此作为配置文件进行导入,亦无不可。然而,在跨语言共享配置信息时,此类方法可能会面临一定的障碍。鉴于篇幅限制及主题聚焦,本文对此类非主流配置文件类型不做过多阐述。对于对此类内容感兴趣的读者,建议进一步自行深入研究。

相关文章:

Python中的常见配置文件写法

在软件开发过程中,开发者常常需要利用一些固定的参数或常量。对于这些相对恒定且频繁使用的元素,一种常见的做法是将它们集中存储在一个特定的文件中,以避免在多个模块代码中重复定义,从而维护核心代码的清晰度和整洁性。 具体而…...

语义分割实战——基于PSPnet神经网络动物马分割系统源码

第一步:准备数据 动物马分割数据,总共有328张图片,里面的像素值为0和1,所以看起来全部是黑的,不影响使用 第二步:搭建模型 psp模块的样式如下,其psp的核心重点是采用了步长不同,po…...

Python+Appium编写脚本

一、环境配置 1、安装JDK,版本1.8以上 2、安装Python,版本3.x以上,用来解释python 3、安装node.js,版本^14.17.0 || ^16.13.0 || >18.0.0,用来安装Appimu Server 4、安装npm,版本>8,用…...

RK3288 android7.1 适配 ilitek i2c接口TP

一,Ilitek 触摸屏简介 Ilitek 提供多种型号的触控屏控制器,如 ILI6480、ILI9341 等,采用 I2C 接口。 这些控制器能够支持多点触控,并具有优秀的灵敏度和响应速度。 Ilitek 的触摸屏控制器监测屏幕上的触摸事件。 当触摸发生时&am…...

C++ 越来越像函数式编程了!

C 越来越像函数式编程了 大家好,欢迎来到今天的博客话题。今天我们要聊的是 C 这门老牌的强类型语言是如何一步一步向函数式编程靠拢的。从最早的函数指针,到函数对象(Functor),再到 std::function 和 std::bind&…...

maven工程结构说明

1、maven工程文件目录 |-- pom.xml # Maven 项目管理文件 |-- src # 放项目源文件|-- main # 项目主要代码| |-- java # Java 源代码目录| | -- com/example/myapp…...

【GESP】C++一级真题练习(202312)luogu-B3921,小杨的考试

GESP一级真题练习。为2023年12月一级认证真题。逻辑计算问题。 题目题解详见:【GESP】C一级真题练习(202312)luogu-B3921,小杨的考试 | OneCoder 【GESP】C一级真题练习(202312)luogu-B3921,小杨的考试 | OneCoderGESP一级真题练习。为2023…...

游戏中Dubbo类的RPC设计时的注意要点

一.消费方 1.需要使用到动态代理,代理指定的接口,这样子接口被调用时,就可以拿到:"类名 方法名参数返回值" 这些类型。 2.既然是rpc,那么接口被调用时,肯定在动态代理中会进行网络消息的发送&a…...

ARXML汽车可扩展标记性语言规范讲解

ARXML: Automotive Extensible Markup Language (汽车可扩展标记语言) xmlns: Xml name space (xml 命名空间) xsd: Xml Schema Definition (xml 架构定义) 1、XML与HTML的区别,可扩展。 可扩展,主要是…...

Hadoop(HDFS)

Hadoop是一个开源的分布式系统架构,旨在解决海量数据的存储和计算问题,Hadoop的核心组件包括Hadoop分布式文件系统(HDFS)、MapReduce编程模型和YARN资源管理器,最近需求需要用到HDFS和YARN。 文章目录 HDFS优缺点HDFS的读写原理 常…...

机器学习系列----梯度下降算法

梯度下降算法(Gradient Descent)是机器学习和深度学习中最常用的优化算法之一。无论是在训练神经网络、线性回归模型,还是其他类型的机器学习模型时,梯度下降都是不可或缺的一部分。它的核心目标是最小化一个损失函数(…...

AI大模型:软件开发的未来之路

随着AI技术的快速发展,AI大模型正在对软件开发流程产生深远的影响。从代码自动生成到智能测试,AI大模型正在重塑软件开发的各个环节,为软件开发者、企业和整个产业链带来新的流程和模式变化。 首先,AI大模型的定义是指通过大规模…...

指标+AI+BI:构建数据分析新范式丨2024袋鼠云秋季发布会回顾

10月30日,袋鼠云成功举办了以“AI驱动,数智未来”为主题的2024年秋季发布会。大会深度探讨了如何凭借 AI 实现新的飞跃,重塑企业的经营管理方式,加速数智化进程。 作为大会的重要环节之一,袋鼠云数栈产品经理潮汐带来了…...

2024年第四届“网鼎杯”网络安全比赛---朱雀组Crypto- WriteUp

2024年第四届“网鼎杯”网络安全比赛---朱雀组Crypto-WriteUp Crypto:Crypto-2:Crypto-3: 前言:本次比赛已经结束,用于赛后复现,欢迎大家交流学习! Crypto: Crypto-2: …...

关于Markdown的一点疑问,为什么很多人说markdown比word好用?

markdown和word压根不是一类工具,不存在谁比谁好,只是应用场景不一样。 你写博客、写readme肯定得markdown,但写合同、写简历肯定word更合适。 markdown和word类似邮箱和微信的关系,这两者都可以通信,但微信因为功能…...

NoSQL大数据存储技术测试(1)绪论

写在前面:未完成测试的同学,请先完成测试,此博文供大家复习使用,(我的答案)均为正确答案,大家可以放心复习 单项选择题 第1题 以下不属于云计算部署模型的是( ) 公…...

Linux命令学习,git命令

Linux系统,Git是一个强大的版本管理系统,允许用户跟踪代码的更改、管理项目历史以及与他人协作。 Linux Git命令: 初始化仓库:当前目录创建一个Git仓库,生成.git隐藏目录存储版本历史和其他Git相关的元数据。 git init 克隆仓库…...

【AI大模型】Transformer中的编码器详解,小白必看!!

前言 Transformer中编码器的构造和运行位置如下图所示,其中编码器内部包含多层,对应下图encoder1…encoder N,每个层内部又包含多个子层:多头自注意力层、前馈神经网络层、归一化层,而最关键的是多头自注意力层。 自注…...

PostgreSQL 字段按逗号分隔成多条数据的技巧与实践 ️

全文目录: 开篇语前言 📚1. PostgreSQL 字段拆分的基本概念 🎯2. 使用 string_to_array 函数拆分字段 💬示例:使用 string_to_array 拆分字段结果: 3. 使用 unnest 和 string_to_array 结合拆分 &#x1f5…...

设计模式学习总结(一)

设计模式学习笔记 面向对象、设计原则、设计模式、编程规范、重构之间的关系 面向对象、设计原则、设计模式、编程规范、重构之间的关系 面向对象 现在,主流的编程范式或者是编程风格有三种:面向过程、面向对象和函数式编程。 需要掌握七大知识点&#…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息&#xff0…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...