【JAVA项目】基于jspm的【医院病历管理系统】
技术简介:采用jsp技术、MySQL等技术实现。
系统简介:通过标签分类管理等方式,实现管理员;个人中心、医院公告管理、用户管理、科室信息管理、医生管理、出诊信息管理、预约时间段管理、预约挂号管理、门诊病历管理、就诊评价管理、系统管理,医生;个人中心、出诊信息管理、预约挂号管理、门诊病历管理、就诊评价管理,用户;个人中心、预约挂号管理、门诊病历管理、就诊评价管理、我的收藏管理,前台首页;首页、医院公告、科室信息、出诊信息、我的、跳转到后台等信息管理功能。
背景:
在当今社会的快速进步中,计算机技术的影响力无处不在,它深刻地渗透到了我们生活的每一个角落。随着居民生活质量的持续提升,公众对于医疗服务,尤其是医院病历管理方面的需求也在不断增长。预约挂号功能因其便捷性而受到广泛欢迎,这促使医院病历管理系统的开发变得尤为迫切和必要。
医院病历管理系统的核心在于利用计算机技术,对医院病历信息进行有效管理。这样的系统不仅增加了患者的选择范围,还简化了对患者信息的即时查询、编辑以及更新流程。它极大地方便了患者,通过与数据库管理系统软件的协同工作,满足了用户的各种需求。在现代管理领域,计算机技术的应用使得计算机成为了人们运用现代技术的重要工具,它能够有效地解决信息获取的便捷性和全面性问题,从而显著提升工作效率。
医院病历管理系统的开发,不仅提高了医疗服务的效率,还改善了患者的就医体验。通过这一系统,患者可以轻松预约医生,查看自己的病历记录,甚至远程咨询医生。这不仅减少了患者在医院的等待时间,还提高了医疗服务的透明度和可访问性。
此外,医院病历管理系统还为医疗工作者提供了极大的便利。医生和护士可以通过系统快速访问患者的病历,制定更加精准的治疗方案。同时,系统还能够自动提醒医护人员关于患者的重要医疗信息,如药物过敏史、定期检查等,从而减少医疗错误,提高医疗服务的安全性。
医院病历管理系统的实施,也有助于医院管理层更好地进行资源规划和决策。通过分析系统中的数据,医院可以优化资源配置,提高运营效率,降低成本。同时,系统还能够为医院提供关于患者满意度、医疗服务质量等关键指标的反馈,帮助医院不断改进服务。
随着技术的不断进步,医院病历管理系统也在不断地升级和完善。集成了人工智能、大数据分析等前沿技术的新一代系统,能够提供更加智能化的医疗服务,如智能诊断、个性化治疗计划等。这些创新不仅提高了医疗服务的质量,还为患者带来了更加个性化的就医体验。
总之,医院病历管理系统的开发和应用,是现代社会医疗服务发展的重要趋势。它不仅极大地方便了患者和医疗工作者,还为医院的管理和决策提供了强有力的支持。随着技术的不断发展,我们可以预见,未来的医院病历管理系统将更加智能、高效,为人们提供更加优质的医疗服务。





目 录
摘 要
ABSTRACT
目 录
第1章 绪论
1.1背景及意义
1.2 国内外研究概况
1.3 研究的内容
第2章 相关技术
2.1 JSP技术介绍
2.2 MyEclipse开发环境
2.3 Tomcat服务器
2.4 MySQL数据库
2.5 JAVA简介
第3章 系统分析
3.1 需求分析
3.2 系统可行性分析
3.2.1技术可行性:技术背景
3.2.2经济可行性
3.2.3操作可行性:
3.3 项目设计目标与原则
3.4系统流程分析
3.4.1操作流程
3.4.2添加信息流程
3.4.3删除信息流程
第4章 系统设计
4.1 系统体系结构
4.2开发流程设计
4.3 数据库设计原则
4.4 数据表
第5章 系统详细设计
5.1前台首页功能模块 18
5.2管理员功能模块 19
5.3用户功能模块
5.4医生功能模块
第6章 系统测试
6.1系统测试的目的
6.2系统测试方法
6.3功能测试
结 论
致 谢
参考文献
相关文章:
【JAVA项目】基于jspm的【医院病历管理系统】
技术简介:采用jsp技术、MySQL等技术实现。 系统简介:通过标签分类管理等方式,实现管理员;个人中心、医院公告管理、用户管理、科室信息管理、医生管理、出诊信息管理、预约时间段管理、预约挂号管理、门诊病历管理、就诊评价管理、…...
Python中的常见配置文件写法
在软件开发过程中,开发者常常需要利用一些固定的参数或常量。对于这些相对恒定且频繁使用的元素,一种常见的做法是将它们集中存储在一个特定的文件中,以避免在多个模块代码中重复定义,从而维护核心代码的清晰度和整洁性。 具体而…...
语义分割实战——基于PSPnet神经网络动物马分割系统源码
第一步:准备数据 动物马分割数据,总共有328张图片,里面的像素值为0和1,所以看起来全部是黑的,不影响使用 第二步:搭建模型 psp模块的样式如下,其psp的核心重点是采用了步长不同,po…...
Python+Appium编写脚本
一、环境配置 1、安装JDK,版本1.8以上 2、安装Python,版本3.x以上,用来解释python 3、安装node.js,版本^14.17.0 || ^16.13.0 || >18.0.0,用来安装Appimu Server 4、安装npm,版本>8,用…...
RK3288 android7.1 适配 ilitek i2c接口TP
一,Ilitek 触摸屏简介 Ilitek 提供多种型号的触控屏控制器,如 ILI6480、ILI9341 等,采用 I2C 接口。 这些控制器能够支持多点触控,并具有优秀的灵敏度和响应速度。 Ilitek 的触摸屏控制器监测屏幕上的触摸事件。 当触摸发生时&am…...
C++ 越来越像函数式编程了!
C 越来越像函数式编程了 大家好,欢迎来到今天的博客话题。今天我们要聊的是 C 这门老牌的强类型语言是如何一步一步向函数式编程靠拢的。从最早的函数指针,到函数对象(Functor),再到 std::function 和 std::bind&…...
maven工程结构说明
1、maven工程文件目录 |-- pom.xml # Maven 项目管理文件 |-- src # 放项目源文件|-- main # 项目主要代码| |-- java # Java 源代码目录| | -- com/example/myapp…...
【GESP】C++一级真题练习(202312)luogu-B3921,小杨的考试
GESP一级真题练习。为2023年12月一级认证真题。逻辑计算问题。 题目题解详见:【GESP】C一级真题练习(202312)luogu-B3921,小杨的考试 | OneCoder 【GESP】C一级真题练习(202312)luogu-B3921,小杨的考试 | OneCoderGESP一级真题练习。为2023…...
游戏中Dubbo类的RPC设计时的注意要点
一.消费方 1.需要使用到动态代理,代理指定的接口,这样子接口被调用时,就可以拿到:"类名 方法名参数返回值" 这些类型。 2.既然是rpc,那么接口被调用时,肯定在动态代理中会进行网络消息的发送&a…...
ARXML汽车可扩展标记性语言规范讲解
ARXML: Automotive Extensible Markup Language (汽车可扩展标记语言) xmlns: Xml name space (xml 命名空间) xsd: Xml Schema Definition (xml 架构定义) 1、XML与HTML的区别,可扩展。 可扩展,主要是…...
Hadoop(HDFS)
Hadoop是一个开源的分布式系统架构,旨在解决海量数据的存储和计算问题,Hadoop的核心组件包括Hadoop分布式文件系统(HDFS)、MapReduce编程模型和YARN资源管理器,最近需求需要用到HDFS和YARN。 文章目录 HDFS优缺点HDFS的读写原理 常…...
机器学习系列----梯度下降算法
梯度下降算法(Gradient Descent)是机器学习和深度学习中最常用的优化算法之一。无论是在训练神经网络、线性回归模型,还是其他类型的机器学习模型时,梯度下降都是不可或缺的一部分。它的核心目标是最小化一个损失函数(…...
AI大模型:软件开发的未来之路
随着AI技术的快速发展,AI大模型正在对软件开发流程产生深远的影响。从代码自动生成到智能测试,AI大模型正在重塑软件开发的各个环节,为软件开发者、企业和整个产业链带来新的流程和模式变化。 首先,AI大模型的定义是指通过大规模…...
指标+AI+BI:构建数据分析新范式丨2024袋鼠云秋季发布会回顾
10月30日,袋鼠云成功举办了以“AI驱动,数智未来”为主题的2024年秋季发布会。大会深度探讨了如何凭借 AI 实现新的飞跃,重塑企业的经营管理方式,加速数智化进程。 作为大会的重要环节之一,袋鼠云数栈产品经理潮汐带来了…...
2024年第四届“网鼎杯”网络安全比赛---朱雀组Crypto- WriteUp
2024年第四届“网鼎杯”网络安全比赛---朱雀组Crypto-WriteUp Crypto:Crypto-2:Crypto-3: 前言:本次比赛已经结束,用于赛后复现,欢迎大家交流学习! Crypto: Crypto-2: …...
关于Markdown的一点疑问,为什么很多人说markdown比word好用?
markdown和word压根不是一类工具,不存在谁比谁好,只是应用场景不一样。 你写博客、写readme肯定得markdown,但写合同、写简历肯定word更合适。 markdown和word类似邮箱和微信的关系,这两者都可以通信,但微信因为功能…...
NoSQL大数据存储技术测试(1)绪论
写在前面:未完成测试的同学,请先完成测试,此博文供大家复习使用,(我的答案)均为正确答案,大家可以放心复习 单项选择题 第1题 以下不属于云计算部署模型的是( ) 公…...
Linux命令学习,git命令
Linux系统,Git是一个强大的版本管理系统,允许用户跟踪代码的更改、管理项目历史以及与他人协作。 Linux Git命令: 初始化仓库:当前目录创建一个Git仓库,生成.git隐藏目录存储版本历史和其他Git相关的元数据。 git init 克隆仓库…...
【AI大模型】Transformer中的编码器详解,小白必看!!
前言 Transformer中编码器的构造和运行位置如下图所示,其中编码器内部包含多层,对应下图encoder1…encoder N,每个层内部又包含多个子层:多头自注意力层、前馈神经网络层、归一化层,而最关键的是多头自注意力层。 自注…...
PostgreSQL 字段按逗号分隔成多条数据的技巧与实践 ️
全文目录: 开篇语前言 📚1. PostgreSQL 字段拆分的基本概念 🎯2. 使用 string_to_array 函数拆分字段 💬示例:使用 string_to_array 拆分字段结果: 3. 使用 unnest 和 string_to_array 结合拆分 ǵ…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
