day58 图论章节刷题Part09(dijkstra(堆优化版)、Bellman_ford 算法)
dijkstra(堆优化版)
朴素版的dijkstra解法的时间复杂度为 O(n^2),时间复杂度只和 n(节点数量)有关系。如果n很大的话,可以从边的角度来考虑。因为是稀疏图,从边的角度考虑的话,我们在堆优化算法中最好使用邻接表来存储图,这样不会造成空间的浪费。同时直接遍历边,通过堆(小顶堆)对边进行排序,选择距离源点最近的节点。
时间复杂度:O(ElogE) ,E 为边的数量- logE是小顶堆的时间复杂度
空间复杂度:O(N + E) ,N 为节点的数量,邻接表:O(n+e)、最短距离数组:O(n)、访问标记数组:O(n)、优先队列:O(n)
之前在求top K问题时应用过小顶堆,这里再复习一下。
小顶堆
小顶堆是一种特殊的完全二叉树,其中每个父节点的值都不大于其子节点的值。这种特性使得堆的根节点始终是堆中的最小值,非常适合用于实现优先队列等数据结构。
创建一个优先队列,并进行维护
PriorityQueue priorityQueue = new PriorityQueue<>();
问题应用:
- 求解 Top K 问题:小顶堆可以用于求解 Top K 问题,即从 N 个元素中找出最大的 K 个元素。通过维护一个大小为 K 的小顶堆(当小顶堆中已经有K个元素时,新加入的元素如果大于最小的顶端数据,则将其加入并丢掉顶端数据),可以高效地解决这个问题。
- 合并多个有序数组:通过将每个数组的首个元素放入堆中,每次取出最小值并将其所在数组的下一个元素加入堆中,可以高效地完成合并。
代码实现
import java.util.*;//边的结构:节点和节点间的权重
class Edge{int to,val;Edge(int to,int val){this.to=to;this.val=val;}
}//距离对的结构:节点和节点到源点的距离
class Pair{int first,second;Pair(int first,int second){this.first=first;this.second=second;}
}//重写comparator类作为接口
class MyComparition implements Comparator<Pair>{@Overridepublic int compare(Pair l,Pair r){return Integer.compare(l.second,r.second);}}public class Main{public static void main (String[] args) {Scanner scan=new Scanner(System.in);int n=scan.nextInt();int m=scan.nextInt();List<List<Edge>> grid=new ArrayList<>(n+1);for(int i=0;i<=n;i++){grid.add(new ArrayList<>());}for(int i=0;i<m;i++){int s=scan.nextInt();int t=scan.nextInt();int k=scan.nextInt();grid.get(s).add(new Edge(t,k));}int[] minDist=new int[n+1];Arrays.fill(minDist,Integer.MAX_VALUE);boolean[] visited=new boolean[n+1];//源点到源点的距离为0minDist[1]=0;PriorityQueue<Pair> pq=new PriorityQueue<>(new MyComparition());pq.add(new Pair(1,0));while(!pq.isEmpty()){Pair cur=pq.poll();if(visited[cur.first]) continue;else visited[cur.first]=true;for(Edge edge:grid.get(cur.first)){if(!visited[edge.to] && minDist[cur.first]+edge.val<minDist[edge.to])minDist[edge.to]=minDist[cur.first]+edge.val;pq.add(new Pair(edge.to,minDist[edge.to]));}}if(minDist[n]!=Integer.MAX_VALUE) System.out.println(minDist[n]);else System.out.println(-1);}
}
Bellman_ford 算法-94. 城市间货物运输 I
本题依然是单源最短路问题,求从节点1 到节点n 的最小费用。 但本题不同之处在于边的权值有负数。
Bellman_ford 算法
Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。
“松弛”-如果通过A到B这条边可以获得更短的到达B节点的路径,即如果 minDist[B] > minDist[A] + value,那么我们就更新 minDist[B] = minDist[A] + value。
Bellman_ford算法采用了动态规划的思想,即:将一个问题分解成多个决策阶段,通过状态之间的递归关系最后计算出全局最优解。
对所有边松弛一次,相当于计算起点到达与起点一条边相连的节点的最短距离。所以需要对所有边松弛n-1次才能得到起点到终点的最短距离。
(有一些题目可能不需要n-1次就能找到最短路径,但是n-1次能保证找到各类题目从原点到所有点的最短路径)
时间复杂度: O(N * E) , N为节点数量,E为图中边的数量
空间复杂度: O(N) ,即 minDist 数组所开辟的空间
和dijkstra算法的区别是,dijkstra算法是从源点开始累加最小路径进行推演的;Bellman_ford 算法则相当于不断的累加路径,如果新的路径小于原值就更新。
代码如下:
import java.util.*;
class Edge{int from,to,val;public Edge(int from,int to,int val){this.from=from;this.to=to;this.val=val;}
}class Main{public static void main (String[] args) {Scanner scan=new Scanner(System.in);int n=scan.nextInt();int m=scan.nextInt();List<Edge> edges=new ArrayList<>();for(int i=0;i<m;i++){int from=scan.nextInt();int to=scan.nextInt();int val=scan.nextInt();edges.add(new Edge(from,to,val));}int[] minDist=new int[n+1];Arrays.fill(minDist,Integer.MAX_VALUE);minDist[1]=0;//进行n-1次松弛for(int i=1;i<n;i++){for(Edge edge:edges){if(minDist[edge.from]!=Integer.MAX_VALUE && minDist[edge.from]+edge.val<minDist[edge.to]){minDist[edge.to]=minDist[edge.from]+edge.val;}}}if(minDist[n]==Integer.MAX_VALUE) System.out.println("unconnected");else System.out.println(minDist[n]);}
}
相关文章:
day58 图论章节刷题Part09(dijkstra(堆优化版)、Bellman_ford 算法)
dijkstra(堆优化版) 朴素版的dijkstra解法的时间复杂度为 O(n^2),时间复杂度只和 n(节点数量)有关系。如果n很大的话,可以从边的角度来考虑。因为是稀疏图,从边的角度考虑的话,我们在堆优化算法中最好使用…...
【计网不挂科】计算机网络期末考试——【选择题&填空题&判断题&简述题】试卷(1)
前言 大家好吖,欢迎来到 YY 滴计算机网络 系列 ,热烈欢迎! 本章主要内容面向接触过C的老铁 本博客主要内容,收纳了一部门基本的计算机网络题目,供yy应对期中考试复习。大家可以参考 本章是去答案版本。带答案的版本在下…...
智能出行助手:SpringBoot共享汽车管理平台
1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理共享汽车管理系统的相关信息成为必然。开发…...
【月之暗面kimi-注册/登录安全分析报告】
前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞 …...
Flink实现实时数据处理
代码如下: #!/usr/bin/python # -*- coding: UTF-8 -*-from pyflink.datastream import StreamExecutionEnvironment from pyflink.table import StreamTableEnvironment, EnvironmentSettings, DataTypes# 初始化执行环境 s_env StreamExecutionEnvironment.get_…...
11.9.2024刷华为
文章目录 HJ31 单词倒排HJ32 密码提取语法知识记录 傻逼OD题目又不全又要收费,看毛线,莫名奇妙 HW这叼机构别搁这儿害人得不得? 我觉得我刷完原来的题目 过一遍华为机考的ED卷出处,就行了 HJ31 单词倒排 游戏本做过了好像 HJ3…...
Chromium 中chrome.system.storage扩展接口定义c++
一、chrome.system.storage 您可以使用 chrome.system.storage API 查询存储设备信息,并在连接和分离可移动存储设备时收到通知。 权限 system.storage 类型 EjectDeviceResultCode 枚举 "success" 移除命令成功执行 - 应用可以提示用户移除设备。…...
【Qt聊天室客户端】登录窗口
1. 验证码 具体实现 登录界面中创建验证码图片空间,并添加到布局管理器中 主要功能概述(创建一个verifycodewidget类专门实现验证码操作) 详细代码 // 头文件#ifndef VERIFYCODEWIDGET_H #define VERIFYCODEWIDGET_H#include <QWidget>…...
如何显示模型特征权重占比图【数据分析】
可视化模型的特征权重 1、流程 1、导入库: numpy:用于处理数组和矩阵。 matplotlib.pyplot:用于绘图。 sklearn.datasets:用于加载数据集。 sklearn.ensemble.RandomForestClassifier:用于训练随机森林模型。2、加载数据集: 使用load_iris函数加载Iris数据集。3、训练模…...
Ubuntu24安装MySQL
下载deb包: 先更新系统包: sudo apt update sudo apt update -y下载mysql: wget https://dev.mysql.com/get/mysql-apt-config_0.8.17-1_all.deb 安装deb包: sudo dpkg -i mysql-apt-config_0.8.17-1_all.deb目前mysql还没有正式支持Ubun…...
微服务架构面试内容整理-Eureka
Spring Cloud Netflix 是一个为构建基于 Spring Cloud 的微服务应用提供的解决方案,利用 Netflix 的开源组件来实现常见的分布式系统功能。以下是 Spring Cloud Netflix 的一些主要组件和特点: 服务注册与发现:Eureka 是一个 RESTful 服务,用于注册和发现微服务。服务实例在…...
qt QErrorMessage详解
1、概述 QErrorMessage是Qt框架中用于显示错误消息的一个对话框类。它提供了一个简单的模态对话框,用于向用户显示错误或警告消息。QErrorMessage通常用于应用程序中,当需要向用户报告错误但不希望中断当前操作时。它提供了一个标准的错误消息界面&…...
SpringBoot 将多个Excel打包下载
在Spring Boot应用中,如果你需要将多个Excel文件打包成一个ZIP文件并提供下载,你可以使用一些Java库来帮助完成这个任务。这里我将展示如何使用Apache POI来生成Excel文件,以及使用Java.util.zip来创建ZIP文件,并通过Spring Boot的…...
分页存储小总结
知识点: 什么是分页存储? 将内存空间分为一个个大小相等的分区(比如:每个分区4KB),每个分区就是一个“页框”(页框页帧内存块物理块物理页面)。每个页框有一个编号,即“页框号”(…...
Star-CCM+应用篇之动力电池温度场仿真操作流程与方法
1 动力电池温度场仿真项目 电池包内模组温度分布、电芯温度分布、温升速率、充电时间等。 2 动力电池温度场仿真分析流程图 图1 电池包热流场分析流程 3 动力电池温度场仿真参数需求 类别...
Spring Boot应用开发:从入门到精通
Spring Boot应用开发:从入门到精通 Spring Boot是Spring框架的一个子项目,旨在简化Spring应用的初始搭建和开发过程。通过自动配置和约定大于配置的原则,Spring Boot使开发者能够快速构建独立的、生产级别的Spring应用。本文将深入探讨Sprin…...
【JAVA项目】基于jspm的【医院病历管理系统】
技术简介:采用jsp技术、MySQL等技术实现。 系统简介:通过标签分类管理等方式,实现管理员;个人中心、医院公告管理、用户管理、科室信息管理、医生管理、出诊信息管理、预约时间段管理、预约挂号管理、门诊病历管理、就诊评价管理、…...
Python中的常见配置文件写法
在软件开发过程中,开发者常常需要利用一些固定的参数或常量。对于这些相对恒定且频繁使用的元素,一种常见的做法是将它们集中存储在一个特定的文件中,以避免在多个模块代码中重复定义,从而维护核心代码的清晰度和整洁性。 具体而…...
语义分割实战——基于PSPnet神经网络动物马分割系统源码
第一步:准备数据 动物马分割数据,总共有328张图片,里面的像素值为0和1,所以看起来全部是黑的,不影响使用 第二步:搭建模型 psp模块的样式如下,其psp的核心重点是采用了步长不同,po…...
Python+Appium编写脚本
一、环境配置 1、安装JDK,版本1.8以上 2、安装Python,版本3.x以上,用来解释python 3、安装node.js,版本^14.17.0 || ^16.13.0 || >18.0.0,用来安装Appimu Server 4、安装npm,版本>8,用…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
