Python学习从0到1 day27 第三阶段 Spark ② 数据计算Ⅰ
人总是会执着于失去的,而又不珍惜现在所拥有的
—— 24.11.9
一、map方法
PySpark的数据计算,都是基于RDD对象来进行的,采用依赖进行,RDD对象内置丰富的成员方法(算子)
map算子
功能:map算子,是将RDD的数据一条条处理(处理的逻辑:基于map算子中接收的处理函数),返回新的RDD
语法:
from pyspark import SparkConf,SparkContext# 设置spark中的python解释器对象
import os
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)# 准备一个RDD对象
rdd = sc.parallelize([1,2,3,4,5,6,7,8,9])
# 通过map方法将全部的数据乘以10
# 能够接受一个函数,并且将函数作为参数传递进去
# 方法1:接受一个匿名函数lambda
rdd1 = rdd.map(lambda x:x*10)
print("rdd1:",rdd1.collect())# 方法2:接受一个函数
def multi(x):return x * 10rdd2 = rdd.map(multi)
print("rdd2:",rdd2.collect())# 匿名函数链式调用
# 将每一个数乘以100再加上7再减去114
rdd3 = rdd.map(lambda x:x*100).map(lambda x:x+7).map(lambda x:x-114)
print("rdd3:",rdd3.collect())

注:
map算子可以通过lambda匿名函数进行链式调用,处理复杂的功能
二、flatMap方法
flatMap算子
计算逻辑和map一样
比map多出:解除一层嵌套的功能
功能:
对rdd执行map操作,然后进行 解除嵌套 操作
用法
from pyspark import SparkConf,SparkContext# 设置spark中的python解释器对象
import os
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)rdd = sc.parallelize(["一切都会解决 回头看","轻舟已过万重山 一切都会好的","我一直相信"])# 需求:将RDD数据里面的一个个单词提取出来
rdd1 = rdd.map(lambda x:x.split(" "))
print("rdd1:", rdd2.collect())rdd2 = rdd.flatMap(lambda x:x.split(" "))
print("rdd2:", rdd3.collect())

注:
计算逻辑和map一样,比map多出解除一层嵌套的功能
三、reduceByKey方法
reduceByKey算子
功能:
① 自动分组:针对KV型(二元元组)RDD,自动按照 key 分组
② 分组聚合:接受一个处理函数,根据你提供的聚合逻辑,完成组内数据 (valve) 的聚合操作.
用法:
rdd.reduceByKey(func)
# func:(V,V)→V
# 接受2个传入参数(类型要一致),返回一个返回值,类型和传入要求一致
reduceByKey的聚合逻辑是:
比如,有[1,2,3,4,5],然后聚合函数是:lambda a,b:a + b
将容器中的所有元素进行聚合

语法:
from pyspark import SparkConf,SparkContext# 设置spark中的python解释器对象
import os
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)# 准备一个二元元组rdd对象
rdd = sc.parallelize([("男",99),("男",88),("女",99),("男",77),("女",88)])# 求男生和女生两个组的成绩之和
rdd2 = rdd.reduceByKey(lambda x , y : x + y)
print(rdd2.collect())

注:
1.reduceByKey算子:接受一个处理函数,对数据进行两两计算
四、WordCount案例
使用PySpark进行单词计数的案例
读取文件,统计文件内,单词的出现数量
WordCount文件:
So long as men can breathe or eyes can see,
So long lives this,and this gives life to thee.
代码
将所有单词都转换成二元元组,单词为key,value设置为1,value表示每个单词出现的次数,作为value,初始化为1,若单词相等,则表示key相同,value值进行累加
from pyspark import SparkConf,SparkContext# 设置spark中的python解释器对象
import os
os.environ['PYSPARK_PYTHON'] = "E:/python.learning/pyt/scripts/python.exe"conf = SparkConf().setMaster("local[*]").setAppName("test_spark")
sc = SparkContext(conf=conf)# 读取数据文件
rdd = sc.textFile("D:/2LFE\Desktop\WordCount.txt")
# 取出全部单词
word_rdd = rdd.flatMap(lambda x:x.split(" "))
print(word_rdd.collect())
# 将所有单词都转换成二元元组,单词为key,value设置为1,value表示每个单词出现的次数,作为value,
# 若单词相等,则表示value相同,key值进行累加
word_with_one_rdd = word_rdd.map(lambda word:(word,1))
# 分组并求和
result_rdd = word_with_one_rdd.reduceByKey(lambda a,b:a+b)
# 打印并输出结果
print(result_rdd.collect())

相关文章:
Python学习从0到1 day27 第三阶段 Spark ② 数据计算Ⅰ
人总是会执着于失去的,而又不珍惜现在所拥有的 —— 24.11.9 一、map方法 PySpark的数据计算,都是基于RDD对象来进行的,采用依赖进行,RDD对象内置丰富的成员方法(算子) map算子 功能:map算子…...
Python学习从0到1 day27 第三阶段 Spark ③ 数据计算 Ⅱ
目录 一、Filter方法 功能 语法 代码 总结 filter算子 二、distinct方法 功能 语法 代码 总结 distinct算子 三、SortBy方法 功能 语法 代码 总结 sortBy算子 四、数据计算练习 需求: 解答 总结 去重函数: 过滤函数: 转换函数: 排…...
腾讯混元3D模型Hunyuan3D-1.0部署与推理优化指南
腾讯混元3D模型Hunyuan3D-1.0部署与推理优化指南 摘要: 本文将详细介绍如何部署腾讯混元3D模型Hunyuan3D-1.0,并针对不同硬件配置提供优化的推理方案。我们将探讨如何在有限的GPU内存下,通过调整配置来优化模型的推理性能。 1. 项目概览 腾…...
基于 PyTorch 从零手搓一个GPT Transformer 对话大模型
一、从零手实现 GPT Transformer 模型架构 近年来,大模型的发展势头迅猛,成为了人工智能领域的研究热点。大模型以其强大的语言理解和生成能力,在自然语言处理、机器翻译、文本生成等多个领域取得了显著的成果。但这些都离不开其背后的核心架…...
IDEA构建JavaWeb项目,并通过Tomcat成功运行
目录 一、Tomcat简介 二、Tomcat安装步骤 1.选择分支下载 2.点击下载zip安装包 3.解压到没有中文、空格和特殊字符的目录下 4.双击bin目录下的startup.bat脚本启动Tomcat 5.浏览器访问Tomcat 6.关闭Tomcat服务器 三、Tomcat目录介绍 四、WEB项目的标准结构 五、WEB…...
Mac解决 zsh: command not found: ll
Mac解决 zsh: command not found: ll 文章目录 Mac解决 zsh: command not found: ll解决方法 解决方法 1.打开bash_profile 配置文件vim ~/.bash_profile2.在文件中添加配置:alias llls -alF键盘按下 I 键进入编辑模式3. alias llls -alF添加完配置后,按…...
库打包工具 rollup
库打包工具 rollup 摘要 **概念:**rollup是一个模块化的打包工具 注:实际应用中,rollup更多是一个库打包工具 与Webpack的区别: 文件处理: rollup 更多专注于 JS 代码,并针对 ES Module 进行打包webpa…...
unplugin-vue-components 库作用
一、基本概念与用途 1. 自动导入 Vue 组件 unplugin - vue - components是一个用于 Vue 项目的插件,主要功能是自动导入组件,从而减少在 Vue 组件中手动导入其他组件的繁琐过程。 在大型 Vue 项目中,往往会有许多自定义组件或者第三方组件…...
LinkedList和单双链表。
java中提供了双向链表的动态数据结构 --- LinkedList,它同时也实现了List接口,可以当作普通的列表来使用。也可以自定义实现链表。 单向链表:一个节点本节点数据下个节点地址 给定两个有序链表的头指针head1和head2,打印两个链表…...
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
文末有免费工具可在线体验,或者网络搜索关键词“思通开源AI能力平台” 一、扫描与图像预处理 技术实现过程 在纸质档案的数字化过程中,首先需要使用高精度扫描仪对纸质文档进行扫描,生成高清的数字图像。这一步骤是整个OCR流程的基础…...
Spring boot 读模块项目升级为spring cloud 项目步骤以及问题
1.结构说明 bean 模块 ,public 模块, client 模块, erp模块,system 主模块。 2.环境说明以及pom 原本环境 新环境 mysql 5.7 -------------- mysql 8.0 maven 3.9.6 jdk 8 -----------…...
时序数据库之influxdb和倒排索引以及LSM-TREE
一、时序数据库的特点 1、时序数据库用作打点,用来做监控使用,属于写多读少的场景,而且由于时间不可逆,几乎不可能出现更新的操作。而且监控数据一般只会查询最近几分钟数据,冷热数据查询频率非常明显。因此非常贴合ES…...
如何避免消息的重复消费问题?(消息消费时的幂等性)
如何避免消息的重复消费问题 1、 消息的幂等性1.1、概念1.2、产生业务场景 2、全局唯一IDRedis解决消息幂等性问题2.1、application.yml配置文件2.2、生产者发送消息2.3、消费者接收消息2.4、pom.xml引入依赖2.5、RabbitConfig配置类2.6、启动类2.7、订单对象2.8、测试 1、 消息…...
【Java SE】类与对象
现实世界中,随处可见的一个事物实体就是对象,而类就是同一类事物(或对象)的统称,由一个类构造对象的过程称为创建这个类的一个实例(instance),即: 类(class&…...
基于springboot的公益服务平台的设计与实现
文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于springboot的公益服务平台的设计与实…...
Tomcat(6) 什么是Servlet容器?
Servlet容器是Java EE技术中的一个关键组件,它负责管理和执行Servlet。Servlet容器提供了运行时环境,使得Servlet能够接收和响应来自客户端的HTTP请求。以下是Servlet容器的详细解释,以及一些相关的代码示例。 Servlet容器的主要功能 加载和…...
用js去除变量里的html标签
要用 JavaScript 去除字符串中的 HTML 标签,你可以使用正则表达式。以下是一个简单的示例代码: function removeHTMLTags(str) {return str.replace(/<[^>]*>/g, ); }// 示例 var str <p>This is <b>bold</b> text with <…...
Vue3+element-plus摘要
1.如果自己电脑vue版本是vue2版本,下面将详细介绍如何在vue2版本基础上继续安装 vue3版本且不会影响vue2版本的使用 1-1 在c盘或者别的盘建一个文件夹vue3 1-2 在这个文件夹里使用WINR 打开终端 输入命令 npm install vue/cli 安装完即可 1-3 然后进入此文件夹中的n…...
Android Studio 将项目打包成apk文件
第一步:选择Build -> Generate Signed APK 会出现: 我们选择 Create new… 然后选择你要存放密钥的地方 点击ok之后,则选择好了文件,并生成了jks文件了。 点击ok之后, 会出现: 选择release…...
贪心算法day2(最长递增子序列)
目录 1.最长递增子序列 方法一:动态规划 方法二:贪心二分查找 1.最长递增子序列 链接:. - 力扣(LeetCode) 方法一:动态规划 思路:我们定义dp[i]为最长递增子序列,那么dp[j]就是…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
