Spark中的shuffle
Shuffle的本质基于磁盘划分来解决分布式大数据量的全局分组、全局排序、重新分区【增大】的问题。
1、Spark的Shuffle设计
Spark Shuffle过程也叫作宽依赖过程,Spark不完全依赖于内存计算,面临以上问题时,也需要Shuffle过程。
2、Spark中哪些算子会产生Shuffle?
只要这个算子包含以下四个功能之一:必须经过Shuffle
进行join:join、fullOuterJoin、 leftOuterJoin 、rightOuterJoin
大数据量全局分组:reduceByKey、groupByKey
大数据量全局排序:sortBy、sortByKey
大数据量增大分区:repartition、coalesce
3、Spark中有哪些shuffle【分类的】?
Spark 0.8及以前 Hash Based Shuffle
Spark 0.8.1 为 Hash Based Shuffle 引入 File Consolidation 机制
Spark 1.1 引入 Sort Based Shuffle ,但默认仍为 Hash Based Shuffle
Spark 1.2 默认的 Shuffle 方式改为 Sort Based Shuffle
Spark 1.4 引入 Tungsten-Sort Based Shuffle 直接使用堆外内存和新的内存管理模型,节省了内存空间和大量的gc,提升了性能
Spark 1.6 Tungsten-sort 并入 Sort Based Shuffle
Spark 2.0 Hash Based Shuffle 退出历史舞台
1)Hash Based Shuffle
特点:没有排序,只分区,每个Task按照ReduceTask个数生成多个文件【M * R】
优点:简单,数据量比较小,性能就比较高
缺点:小文件非常多,数据量比较大性能非常差
2) Hash Based Shuffle 【优化后的,File Consolidation机制
3) Sort Based Shuffle [目前最新的]
Shuffle Write + Shuffle Read
Shuffle Write:类似于MR中的Map端Shuffle,但是Spark的 Shuffle Write 有3种,会根据情况自动判断选择哪种Shuffle Write
Shuffle Read:类似于MR中的Reduce端Shuffle,但是 Spark的 Shuffle Read 功能由算子来决定,不同算子经过的过程不一样的。
MR Shuffle可以参考MapReduce 的 Shuffle 过程-CSDN博客
4、Spark 2以后的Shuffle Write判断机制:
第一种:SortShuffleWriter:普通Sort Shuffle Write机制
排序,生成一个整体基于分区和分区内部有序的文件和一个索引文件
大多数场景:数据量比较大场景 与MR的Map端Shuffle基本一致
特点:有排序,先生成多个有序小文件,再生成整体有序大文件,每个Task生成2个文件,数据文件和索引文件
Sort Shuffle Write过程与MapReduce的Map端shuffle基本一致
第二种:BypassMergeSortShuffleWriter
类似于优化后的Hash Based Shuffle,先为每个分区生成一个文件,最后合并为一个大文件,分区内部不排序
条件:分区数小于200,并且Map端没有聚合操作
场景:数据量小
跟第一个相比,处理的数据量小,处理的分区数小于200 ,不在内存中排序。
第三种:UnsafeShuffleWriter
钨丝计划方案,使用UnSafe API操作序列化数据,使用压缩指针存储元数据,溢写合并使用fastMerge提升效率
条件:Map端没有聚合操作、序列化方式需要支持重定位,Partition个数不能超过2^24-1个
在什么情况下使用什么ShuffleWriter 呢?
ShuffleWriter的实现方式有三种:
BypassMergeSortShuffleWriter
使用这种shuffle writer的条件是:
(1) 没有map端的聚合操作
(2) 分区数小于参数:spark.shuffle.sort.bypassMergeThreshold,默认是200
UnsafeShuffleWriter
使用这种shuffle writer的条件是:
(1) 序列化工具类支持对象的重定位
(2) 不需要在map端进行聚合操作
(3) 分区数不能大于:PackedRecordPointer.MAXIMUM_PARTITION_ID + 1
SortShuffleWriter
若以上两种shuffle writer都不能选择,则使用该shuffle writer类。
这也是相对比较常用的一种shuffle writer。
5、 Shuffle Read:类似于MapReduce中的Reduce端shuffle
MR:Reduce端的shuffle过程一定会经过合并排序、分组
需求:统计每个单词出现的次数,不需要排序,依旧会给结果进行排序
Spark:Shuffle Read具体的功能由算子来决定,不同的算子在经过shuffle时功能不一样
reduceByKey:Shuffle Read:只分组聚合,不排序
sortByKey:Shuffle Read:只排序,不分组
repartition:Shuffle Read:不排序,不分组
相关文章:

Spark中的shuffle
Shuffle的本质基于磁盘划分来解决分布式大数据量的全局分组、全局排序、重新分区【增大】的问题。 1、Spark的Shuffle设计 Spark Shuffle过程也叫作宽依赖过程,Spark不完全依赖于内存计算,面临以上问题时,也需要Shuffle过程。 2、Spark中哪…...

网络安全SQL初步注入2
六.报错注入 mysql函数 updatexml(1,xpath语法,0) xpath语法常用concat拼接 例如: concat(07e,(查询语句),07e) select table_name from information_schema.tables limit 0,1 七.宽字节注入(如果后台数据库的编码为GBK) url编码:为了防止提交的数据和url中的一些有特殊意…...

使用Go语言编写一个简单的NTP服务器
NTP服务介绍 NTP服务器【Network Time Protocol(NTP)】是用来使计算机时间同步化的一种协议。 应用场景说明 为了确保封闭局域网内多个服务器的时间同步,我们计划部署一个网络时间同步服务器(NTP服务器)。这一角色将…...

注意力机制篇 | YOLO11改进 | 即插即用的高效多尺度注意力模块EMA
前言:Hello大家好,我是小哥谈。与传统的注意力机制相比,多尺度注意力机制引入了多个尺度的注意力权重,让模型能够更好地理解和处理复杂数据。这种机制通过在不同尺度上捕捉输入数据的特征,让模型同时关注局部细节和全局…...

昇思大模型平台打卡体验活动:项目3基于MindSpore的GPT2文本摘要
昇思大模型平台打卡体验活动:项目3基于MindSpore的GPT2文本摘要 1. 环境设置 本项目可以沿用前两个项目的相关环境设置。首先,登陆昇思大模型平台,并进入对应的开发环境: https://xihe.mindspore.cn/my/clouddev 接着࿰…...

web——[GXYCTF2019]Ping Ping Ping1——过滤和绕过
0x00 考点 0、命令联合执行 ; 前面的执行完执行后面的 | 管道符,上一条命令的输出,作为下一条命令的参数(显示后面的执行结果) || 当前面的执行出错时(为假)执行后面的 & 将任…...

婚礼纪 9.5.57 | 解锁plus权益的全能结婚助手,一键生成结婚请柬
婚礼纪是一款结婚服务全能助手,深受9000万新人信赖的一站式结婚服务平台。解锁plus权益后,用户可以享受部分VIP会员功能。应用提供了丰富的结婚筹备工具和服务,包括一键生成结婚请柬、婚礼策划、婚纱摄影、婚宴预订等。婚礼纪旨在为新人提供全…...

M1M2 MAC安装windows11 虚拟机的全过程
M1/M2 MAC安装windows11 虚拟机的全过程 这两天折腾了一下windows11 arm架构的虚拟机,将途中遇到的坑总结一下。 1、虚拟机软件:vmware fusion 13.6 或者 parallel 19 ? 结论是:用parellel 19。 这两个软件都安装过࿰…...

监控架构-Prometheus-普罗米修斯
目录 1. Prometheus概述 2. Prometheus vs Zabbix 3. Prometheus极速上手指南 3.1 时间同步 3.2 部署Prometheus 3.3 启动Prometheus 3.4 Prometheus监控架构 3.5 补充 配置页面 简单过滤 查看数据 查看图形 http://prometheus.oldboylinux.cn:9090/metrics显示…...

Kylin Server V10 下自动安装并配置Kafka
Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消息收集、…...

windows环境下cmd窗口打开就进入到对应目录,一般人都不知道~
前言 很久以前,我还在上一家公司的时候,有一次我看到我同事打开cmd窗口的方式,瞬间把我惊呆了。原来他打开cmd窗口的方式,不是一般的在开始里面输入cmd,然后打开cmd窗口。而是另外一种方式。 我这个同事是个技术控&a…...

企微SCRM价格解析及其性价比分析
内容概要 在如今的数字化时代,企业对于客户关系管理的需求日益增长,而企微SCRM(Social Customer Relationship Management)作为一款新兴的客户管理工具,正好满足了这一需求。本文旨在为大家深入解析企微SCRM的价格体系…...

【SpringMVC】记录一次Bug——mvc:resources设置静态资源不过滤导致WEB-INF下的资源无法访问
SpringMVC 记录一次bug 其实都是小毛病,但是为了以后再出毛病,记录一下: mvc:resources设置静态资源不过滤问题 SpringMVC中配置的核心Servlet——DispatcherServlet,为了可以拦截到所有的请求(JSP页面除外…...

【React】React 生命周期完全指南
🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 💫个人格言: "如无必要,勿增实体" 文章目录 React 生命周期完全指南一、生命周期概述二、生命周期的三个阶段2.1 挂载阶段&a…...

【NLP】使用 SpaCy、ollama 创建用于命名实体识别的合成数据集
命名实体识别 (NER) 是自然语言处理 (NLP) 中的一项重要任务,用于自动识别和分类文本中的实体,例如人物、位置、组织等。尽管它很重要,但手动注释大型数据集以进行 NER 既耗时又费钱。受本文 ( https://huggingface.co/blog/synthetic-data-s…...

【C++练习】二进制到十进制的转换器
题目:二进制到十进制的转换器 描述 编写一个程序,将用户输入的8位二进制数转换成对应的十进制数并输出。如果用户输入的二进制数不是8位,则程序应提示用户输入无效,并终止运行。 要求 程序应首先提示用户输入一个8位二进制数。…...

Vue功能菜单的异步加载、动态渲染
实际的Vue应用中,常常需要提供功能菜单,例如:文件下载、用户注册、数据采集、信息查询等等。每个功能菜单项,对应某个.vue组件。下面的代码,提供了一种独特的异步加载、动态渲染功能菜单的构建方法: <s…...

云技术基础学习(一)
内容预览 ≧∀≦ゞ 声明导语云技术历史 云服务概述云服务商与部署模式1. 公有云服务商2. 私有云部署3. 混合云模式 云服务分类1. 基础设施即服务(IaaS)2. 平台即服务(PaaS)3. 软件即服务(SaaS) 云架构云架构…...

【优选算法篇】微位至简,数之恢宏——解构 C++ 位运算中的理与美
文章目录 C 位运算详解:基础题解与思维分析前言第一章:位运算基础应用1.1 判断字符是否唯一(easy)解法(位图的思想)C 代码实现易错点提示时间复杂度和空间复杂度 1.2 丢失的数字(easy࿰…...

MFC工控项目实例二十九主对话框调用子对话框设定参数值
在主对话框调用子对话框设定参数值,使用theApp变量实现。 子对话框各参数变量 CString m_strTypeName; CString m_strBrand; CString m_strRemark; double m_edit_min; double m_edit_max; double m_edit_time2; double …...

Java | Leetcode Java题解之第546题移除盒子
题目: 题解: class Solution {int[][][] dp;public int removeBoxes(int[] boxes) {int length boxes.length;dp new int[length][length][length];return calculatePoints(boxes, 0, length - 1, 0);}public int calculatePoints(int[] boxes, int l…...

【前端】Svelte:响应性声明
Svelte 的响应性声明机制简化了动态更新 UI 的过程,让开发者不需要手动追踪数据变化。通过 $ 前缀与响应式声明语法,Svelte 能够自动追踪依赖关系,实现数据变化时的自动重新渲染。在本教程中,我们将详细探讨 Svelte 的响应性声明机…...

PostgreSQL 性能优化全方位指南:深度提升数据库效率
PostgreSQL 性能优化全方位指南:深度提升数据库效率 别忘了请点个赞收藏关注支持一下博主喵!!! 在现代互联网应用中,数据库性能优化是系统优化中至关重要的一环,尤其对于数据密集型和高并发的应用而言&am…...

Flutter鸿蒙next 使用 BLoC 模式进行状态管理详解
1. 引言 在 Flutter 中,随着应用规模的扩大,管理应用中的状态变得越来越复杂。为了处理这种复杂性,许多开发者选择使用不同的状态管理方案。其中,BLoC(Business Logic Component)模式作为一种流行的状态管…...

Gen-RecSys——一个通过生成和大规模语言模型发展起来的推荐系统
概述 生成模型的进步对推荐系统的发展产生了重大影响。传统的推荐系统是 “狭隘的专家”,只能捕捉特定领域内的用户偏好和项目特征,而现在生成模型增强了这些系统的功能,据报道,其性能优于传统方法。这些模型为推荐的概念和实施带…...

Android 重新定义一个广播修改系统时间,避免系统时间混乱
有时候,搞不懂为什么手机设备无法准确定义系统时间,出现混乱或显示与实际不符,需要重置或重新设定一次才行,也是真的够无语的!! vendor/mediatek/proprietary/packages/apps/MtkSettings/AndroidManifest.…...

第3章:角色扮演提示-Claude应用开发教程
更多教程,请访问claude应用开发教程 设置 运行以下设置单元以加载您的 API 密钥并建立 get_completion 辅助函数。 !pip install anthropic# Import pythons built-in regular expression library import re import anthropic# Retrieve the API_KEY & MODEL…...

【FAQ】HarmonyOS SDK 闭源开放能力 —Vision Kit
1.问题描述: 人脸活体检测页面会有声音提示,如何控制声音开关? 解决方案: 活体检测暂无声音控制开关,但可通过其他能力控制系统音量,从而控制音量。 活体检测页面固定音频流设置的是8(无障碍…...

【问题解决】Tomcat由低于8版本升级到高版本使用Tomcat自带连接池报错无法找到表空间的问题
问题复现 项目上历史项目为解决漏洞扫描从Tomcat 6.0升级到了9.0版本,服务启动的日志显示如下警告,数据源是通过JNDI方式在server.xml中配置的,控制台上狂刷无法找到表空间的错误(没截图) 报错: 06-Nov-…...

Git LFS
Git LFS(Git Large File Storage)是一个用于管理和版本控制大文件的工具,它扩展了 Git 的功能,帮助处理大文件或二进制文件的存储和管理问题。 为什么需要 Git LFS? Git 默认是针对文本文件进行优化的,尤…...