当前位置: 首页 > news >正文

Spark中的shuffle

Shuffle的本质基于磁盘划分来解决分布式大数据量的全局分组、全局排序、重新分区【增大】的问题。

1、Spark的Shuffle设计

Spark Shuffle过程也叫作宽依赖过程,Spark不完全依赖于内存计算,面临以上问题时,也需要Shuffle过程。

2、Spark中哪些算子会产生Shuffle?

只要这个算子包含以下四个功能之一:必须经过Shuffle

        进行join:join、fullOuterJoin、 leftOuterJoin 、rightOuterJoin
        大数据量全局分组:reduceByKey、groupByKey
        大数据量全局排序:sortBy、sortByKey
        大数据量增大分区:repartition、coalesce 

 3、Spark中有哪些shuffle【分类的】? 

Spark 0.8及以前 Hash Based Shuffle
Spark 0.8.1 为 Hash Based Shuffle 引入 File Consolidation 机制
Spark 1.1 引入 Sort Based Shuffle ,但默认仍为 Hash Based Shuffle
Spark 1.2 默认的 Shuffle 方式改为 Sort Based Shuffle
Spark 1.4 引入 Tungsten-Sort Based Shuffle 直接使用堆外内存和新的内存管理模型,节省了内存空间和大量的gc,提升了性能
Spark 1.6 Tungsten-sort 并入 Sort Based Shuffle
Spark 2.0 Hash Based Shuffle 退出历史舞台

1)Hash Based Shuffle

特点:没有排序,只分区,每个Task按照ReduceTask个数生成多个文件【M * R】

优点:简单,数据量比较小,性能就比较高

缺点:小文件非常多,数据量比较大性能非常差

2) Hash Based Shuffle 【优化后的,File Consolidation机制 

3) Sort Based Shuffle [目前最新的] 

 Shuffle Write + Shuffle Read

Shuffle Write:类似于MR中的Map端Shuffle,但是Spark的 Shuffle Write 有3种,会根据情况自动判断选择哪种Shuffle Write

Shuffle Read:类似于MR中的Reduce端Shuffle,但是 Spark的 Shuffle Read 功能由算子来决定,不同算子经过的过程不一样的。

MR Shuffle可以参考MapReduce 的 Shuffle 过程-CSDN博客

4、Spark 2以后的Shuffle Write判断机制:

第一种:SortShuffleWriter:普通Sort Shuffle Write机制

排序,生成一个整体基于分区和分区内部有序的文件和一个索引文件
大多数场景:数据量比较大场景  与MR的Map端Shuffle基本一致
特点:有排序,先生成多个有序小文件,再生成整体有序大文件,每个Task生成2个文件,数据文件和索引文件
Sort Shuffle Write过程与MapReduce的Map端shuffle基本一致

第二种:BypassMergeSortShuffleWriter 

类似于优化后的Hash Based Shuffle,先为每个分区生成一个文件,最后合并为一个大文件,分区内部不排序
条件:分区数小于200,并且Map端没有聚合操作
场景:数据量小

跟第一个相比,处理的数据量小,处理的分区数小于200 ,不在内存中排序。

第三种:UnsafeShuffleWriter 

钨丝计划方案,使用UnSafe API操作序列化数据,使用压缩指针存储元数据,溢写合并使用fastMerge提升效率

条件:Map端没有聚合操作、序列化方式需要支持重定位,Partition个数不能超过2^24-1个

在什么情况下使用什么ShuffleWriter 呢?

ShuffleWriter的实现方式有三种:

BypassMergeSortShuffleWriter

使用这种shuffle writer的条件是:

(1) 没有map端的聚合操作
(2) 分区数小于参数:spark.shuffle.sort.bypassMergeThreshold,默认是200

UnsafeShuffleWriter

使用这种shuffle writer的条件是:

(1) 序列化工具类支持对象的重定位
(2) 不需要在map端进行聚合操作
(3) 分区数不能大于:PackedRecordPointer.MAXIMUM_PARTITION_ID + 1

SortShuffleWriter

若以上两种shuffle writer都不能选择,则使用该shuffle writer类。
这也是相对比较常用的一种shuffle writer。

5、 Shuffle Read:类似于MapReduce中的Reduce端shuffle

MR:Reduce端的shuffle过程一定会经过合并排序、分组
需求:统计每个单词出现的次数,不需要排序,依旧会给结果进行排序


Spark:Shuffle Read具体的功能由算子来决定,不同的算子在经过shuffle时功能不一样
reduceByKey:Shuffle Read:只分组聚合,不排序
sortByKey:Shuffle Read:只排序,不分组
repartition:Shuffle Read:不排序,不分组

相关文章:

Spark中的shuffle

Shuffle的本质基于磁盘划分来解决分布式大数据量的全局分组、全局排序、重新分区【增大】的问题。 1、Spark的Shuffle设计 Spark Shuffle过程也叫作宽依赖过程,Spark不完全依赖于内存计算,面临以上问题时,也需要Shuffle过程。 2、Spark中哪…...

网络安全SQL初步注入2

六.报错注入 mysql函数 updatexml(1,xpath语法,0) xpath语法常用concat拼接 例如: concat(07e,(查询语句),07e) select table_name from information_schema.tables limit 0,1 七.宽字节注入(如果后台数据库的编码为GBK) url编码:为了防止提交的数据和url中的一些有特殊意…...

使用Go语言编写一个简单的NTP服务器

NTP服务介绍 NTP服务器【Network Time Protocol(NTP)】是用来使计算机时间同步化的一种协议。 应用场景说明 为了确保封闭局域网内多个服务器的时间同步,我们计划部署一个网络时间同步服务器(NTP服务器)。这一角色将…...

注意力机制篇 | YOLO11改进 | 即插即用的高效多尺度注意力模块EMA

前言:Hello大家好,我是小哥谈。与传统的注意力机制相比,多尺度注意力机制引入了多个尺度的注意力权重,让模型能够更好地理解和处理复杂数据。这种机制通过在不同尺度上捕捉输入数据的特征,让模型同时关注局部细节和全局…...

昇思大模型平台打卡体验活动:项目3基于MindSpore的GPT2文本摘要

昇思大模型平台打卡体验活动:项目3基于MindSpore的GPT2文本摘要 1. 环境设置 本项目可以沿用前两个项目的相关环境设置。首先,登陆昇思大模型平台,并进入对应的开发环境: https://xihe.mindspore.cn/my/clouddev 接着&#xff0…...

web——[GXYCTF2019]Ping Ping Ping1——过滤和绕过

0x00 考点 0、命令联合执行 ; 前面的执行完执行后面的 | 管道符,上一条命令的输出,作为下一条命令的参数(显示后面的执行结果) || 当前面的执行出错时(为假)执行后面的 & 将任…...

婚礼纪 9.5.57 | 解锁plus权益的全能结婚助手,一键生成结婚请柬

婚礼纪是一款结婚服务全能助手,深受9000万新人信赖的一站式结婚服务平台。解锁plus权益后,用户可以享受部分VIP会员功能。应用提供了丰富的结婚筹备工具和服务,包括一键生成结婚请柬、婚礼策划、婚纱摄影、婚宴预订等。婚礼纪旨在为新人提供全…...

M1M2 MAC安装windows11 虚拟机的全过程

M1/M2 MAC安装windows11 虚拟机的全过程 这两天折腾了一下windows11 arm架构的虚拟机,将途中遇到的坑总结一下。 1、虚拟机软件:vmware fusion 13.6 或者 parallel 19 ? 结论是:用parellel 19。 这两个软件都安装过&#xff0…...

监控架构-Prometheus-普罗米修斯

目录 1. Prometheus概述 2. Prometheus vs Zabbix 3. Prometheus极速上手指南 3.1 时间同步 3.2 部署Prometheus 3.3 启动Prometheus 3.4 Prometheus监控架构 3.5 补充 配置页面 简单过滤 查看数据 查看图形 http://prometheus.oldboylinux.cn:9090/metrics显示…...

Kylin Server V10 下自动安装并配置Kafka

Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消息收集、…...

windows环境下cmd窗口打开就进入到对应目录,一般人都不知道~

前言 很久以前,我还在上一家公司的时候,有一次我看到我同事打开cmd窗口的方式,瞬间把我惊呆了。原来他打开cmd窗口的方式,不是一般的在开始里面输入cmd,然后打开cmd窗口。而是另外一种方式。 我这个同事是个技术控&a…...

企微SCRM价格解析及其性价比分析

内容概要 在如今的数字化时代,企业对于客户关系管理的需求日益增长,而企微SCRM(Social Customer Relationship Management)作为一款新兴的客户管理工具,正好满足了这一需求。本文旨在为大家深入解析企微SCRM的价格体系…...

【SpringMVC】记录一次Bug——mvc:resources设置静态资源不过滤导致WEB-INF下的资源无法访问

SpringMVC 记录一次bug 其实都是小毛病,但是为了以后再出毛病,记录一下: mvc:resources设置静态资源不过滤问题 SpringMVC中配置的核心Servlet——DispatcherServlet,为了可以拦截到所有的请求(JSP页面除外&#xf…...

【React】React 生命周期完全指南

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 React 生命周期完全指南一、生命周期概述二、生命周期的三个阶段2.1 挂载阶段&a…...

【NLP】使用 SpaCy、ollama 创建用于命名实体识别的合成数据集

命名实体识别 (NER) 是自然语言处理 (NLP) 中的一项重要任务,用于自动识别和分类文本中的实体,例如人物、位置、组织等。尽管它很重要,但手动注释大型数据集以进行 NER 既耗时又费钱。受本文 ( https://huggingface.co/blog/synthetic-data-s…...

【C++练习】二进制到十进制的转换器

题目:二进制到十进制的转换器 描述 编写一个程序,将用户输入的8位二进制数转换成对应的十进制数并输出。如果用户输入的二进制数不是8位,则程序应提示用户输入无效,并终止运行。 要求 程序应首先提示用户输入一个8位二进制数。…...

Vue功能菜单的异步加载、动态渲染

实际的Vue应用中&#xff0c;常常需要提供功能菜单&#xff0c;例如&#xff1a;文件下载、用户注册、数据采集、信息查询等等。每个功能菜单项&#xff0c;对应某个.vue组件。下面的代码&#xff0c;提供了一种独特的异步加载、动态渲染功能菜单的构建方法&#xff1a; <s…...

云技术基础学习(一)

内容预览 ≧∀≦ゞ 声明导语云技术历史 云服务概述云服务商与部署模式1. 公有云服务商2. 私有云部署3. 混合云模式 云服务分类1. 基础设施即服务&#xff08;IaaS&#xff09;2. 平台即服务&#xff08;PaaS&#xff09;3. 软件即服务&#xff08;SaaS&#xff09; 云架构云架构…...

【优选算法篇】微位至简,数之恢宏——解构 C++ 位运算中的理与美

文章目录 C 位运算详解&#xff1a;基础题解与思维分析前言第一章&#xff1a;位运算基础应用1.1 判断字符是否唯一&#xff08;easy&#xff09;解法&#xff08;位图的思想&#xff09;C 代码实现易错点提示时间复杂度和空间复杂度 1.2 丢失的数字&#xff08;easy&#xff0…...

MFC工控项目实例二十九主对话框调用子对话框设定参数值

在主对话框调用子对话框设定参数值&#xff0c;使用theApp变量实现。 子对话框各参数变量 CString m_strTypeName; CString m_strBrand; CString m_strRemark; double m_edit_min; double m_edit_max; double m_edit_time2; double …...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

sshd代码修改banner

sshd服务连接之后会收到字符串&#xff1a; SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢&#xff1f; 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头&#xff0c…...