【科普】卷积、卷积核、池化、激活函数、全连接分别是什么?有什么用?
| 概念 | 定义 | 作用/用途 | 解释 | 举例 |
|---|---|---|---|---|
| 卷积 (Convolution) | 是一种数学操作,通过在输入数据(如图片)上滑动卷积核,计算局部区域的加权和。 | 提取数据中的局部特征,例如边缘、角点等。 | 卷积就像在图片上滑动一个小的窗口,计算窗口内各个像素与卷积核的乘积和。这个操作有助于识别图像的某些特征。 | 例如,卷积操作可以用来检测图像中的边缘,如识别照片中的垂直或水平线。 |
| 卷积核 (Kernel/Filter) | 一个小的矩阵,通常比输入数据小,专门用于卷积操作。 | 卷积核用于提取特定的局部特征。 | 卷积核就像是一个模板,它在图像上移动并提取图像的一些重要信息(例如边缘、纹理等)。 | 一个3x3的卷积核可能用于检测图片中3x3区域的边缘或其他特征。 |
| 池化 (Pooling) | 对卷积后的结果进行下采样,通常是取局部区域的最大值或平均值。 | 缩小数据尺寸,减小计算量,同时保留重要特征。 | 池化就像是将图像中的小块区域压缩成一个数字,帮助减少计算的复杂度,并保留最重要的信息。 | 最大池化(Max Pooling)可以从每个2x2的小块中取最大值,减少数据的大小。 |
| 激活函数 (Activation Function) | 是一种数学函数,作用是决定一个神经元的输出是否被激活。 | 引入非线性,使网络能够学习复杂的模式和关系。 | 激活函数决定了神经元的输出是否应该激活(例如决定它是否"开")。它帮助网络从简单的线性变成更强大的模式识别。 | ReLU(Rectified Linear Unit)是一种常见的激活函数,当输入为正时输出与输入相同,为负时输出为0。 |
| 全连接 (Fully Connected, FC) | 是指网络中某一层的每个神经元与前一层的每个神经元都有连接。 | 用于将高层特征整合起来,最终做出分类或预测。 | 全连接层就像是将各个特征汇集在一起,最终做出一个决策(如分类)。它将提取到的特征转换成最终的输出。 | 在图像分类任务中,经过卷积和池化之后,最后通过全连接层将图像特征转化为类别标签。 |
例子:图片分类任务
假设读者想训练一个卷积神经网络来判断一张图片上是猫还是狗。整个过程大致如下:
- 卷积层:通过卷积核(比如3x3的卷积核)对图片进行卷积,提取出局部特征,如猫的耳朵、狗的鼻子等。
- 池化层:通过池化操作(比如最大池化),将图像尺寸减小,同时保留卷积层提取到的最重要的特征。
- 激活函数:经过卷积和池化后,激活函数(如ReLU)决定哪些特征应该被"激活"(输出更强的信号)。
- 全连接层:最后,将所有提取到的特征通过全连接层整合,输出一个表示猫或狗的分类标签。
通过这种方式,卷积神经网络能够从图片中自动提取特征并进行分类,而不需要人工提取复杂的特征。
相关文章:
【科普】卷积、卷积核、池化、激活函数、全连接分别是什么?有什么用?
概念定义作用/用途解释举例卷积 (Convolution)是一种数学操作,通过在输入数据(如图片)上滑动卷积核,计算局部区域的加权和。提取数据中的局部特征,例如边缘、角点等。卷积就像在图片上滑动一个小的窗口,计算…...
距离向量路由选择协议和链路状态路由选择协议介绍
距离向量路由选择协议(Distance Vector Routing Protocol)和链路状态路由选择协议(Link-State Routing Protocol)是两种主要的网关协议,它们用于在网络内部选择数据传输的最佳路径。下面分别介绍这两种协议:…...
【AI大模型】大型语言模型LLM基础概览:技术原理、发展历程与未来展望
目录 🍔 大语言模型 (LLM) 背景 🍔 语言模型 (Language Model, LM) 2.1 基于规则和统计的语言模型(N-gram) 2.2 神经网络语言模型 2.3 基于Transformer的预训练语言模型 2.4 大语言模型 🍔 语言模型的评估指标 …...
ubuntu 22.04 server 安装 和 初始化 LTS
ubuntu 22.04 server 安装 和 初始化 下载地址 https://releases.ubuntu.com/jammy/ 使用的镜像是 ubuntu-22.04.5-live-server-amd64.iso usb 启动盘制作工具 https://rufus.ie/zh/ rufus-4.6p.exe 需要主板 支持 UEFI 启动 Ubuntu22.04.4-server安装 流程 https://b…...
大数据机器学习算法与计算机视觉应用03:数据流
Data Stream Streaming ModelExample Streaming QuestionsHeavy HittersAlgorithm 1: For Majority elementMisra Gries AlgorithmApplicationsApproximation of count Streaming Model 数据流模型 数据流就是所有的数据先后到达,而不是同时存储在内存之中。在现…...
【代码随想录day25】【C++复健】491.递增子序列;46.全排列;47.全排列 II;51. N皇后;37. 解数独
491.递增子序列 本题做的时候除了去重逻辑之外,其他的也勉强算是写出来了,不过还是有问题的,总结如下: 1 本题的关键:去重 与其说是不知道用什么去重,更应该说是完全没想到本题需要去重,说明…...
AI智能识物(微信小程序)
AI智能识物,是一款实用的小程序。可以拍照智能识物,可识别地标、车型、花卉、植物、动物、果蔬、货币、红酒、食材等等,AI智能技术识别准确度高。 更新说明: 此源码为1.2.0版本。 主要更新内容:新增security.imgSec…...
游戏引擎学习第三天
视频参考:https://www.bilibili.com/video/BV1XTmqYSEtm/ 之前的程序不能退出,下面写关闭窗体的操作 PostQuitMessage 是 Windows API 中的一个函数,用于向当前线程的消息队列发送一个退出消息。其作用是请求应用程序退出消息循环,通常用于处…...
帝国CMS7.5仿模板堂柒喜模板建站网 素材资源下载站源码
环境要求:phpmysql、支付伪静态 本套模板采用帝国cms7.5版UTF-8开发,一款非常不错的高端建站源码模板, 适用于中小型网络建站工作室源码模板下载站,支持自定义设置会员组。 源码下载:https://download.csdn.net/down…...
聊一聊Spring中的自定义监听器
前言 通过一个简单的自定义的监听器,从源码的角度分一下Spring中监听的整个过程,分析监听的作用。 一、自定义监听案例 1.1定义事件 package com.lazy.snail;import lombok.Getter; import org.springframework.context.ApplicationEvent;/*** Class…...
【王木头】最大似然估计、最大后验估计
目录 一、最大似然估计(MLE) 二、最大后验估计(MAP) 三、MLE 和 MAP 的本质区别 四、当先验是均匀分布时,MLE 和 MAP 等价 五、总结 本文理论参考王木头的视频: 贝叶斯解释“L1和L2正则化”ÿ…...
智谱AI视频生成模型CogVideoX v1.5开源 支持5/10秒视频生成
今日,智谱技术团队发布了其最新的视频生成模型 CogVideoX v1.5,并将其开源。这一版本是自8月以来,智谱技术团队推出的 CogVideoX 系列中的又一重要进展。 据了解,此次更新大幅提升了视频生成能力,包括支持5秒和10秒的视…...
算法(第一周)
一周周五,总结一下本周的算法学习,从本周开始重新学习许久未见的算法,当然不同于大一时使用的 C 语言以及做过的简单题,现在是每天一题 C 和 JavaScript(还在学,目前只写了一题) 题单是代码随想…...
Linux服务器进程的控制与进程之间的关系
在 Linux 服务器中,进程控制和进程之间的关系是系统管理的一个重要方面。理解进程的生命周期、控制以及它们之间的父子关系对于系统管理员来说至关重要。以下是关于进程控制、进程之间的关系以及如何管理进程的详细介绍: 1. 进程的概念 进程࿰…...
机器学习Housing数据集
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml 设置Seaborn的美观风格 sns.set(style“whitegrid”) Step 1: 下载 Housing 数据集,并读入计算机 def load_housing_data(): housing …...
随着最新的补丁更新,Windows 再次变得容易受到攻击
SafeBreach专家Alon Leviev发布了一款名为 Windows Downdate的工具,可用于对Windows 10、Windows 11 和 Windows Server 版本进行降级攻击。 这种攻击允许利用已经修补的漏洞,因为操作系统再次容易受到旧错误的影响。 Windows Downdate 是一个开源Pyth…...
【Python】爬虫通过验证码
1、将验证码下载至本地 # 获取验证码界面html url http://www.example.com/a.html resp requests.get(url) soup BeautifulSoup(resp.content.decode(UTF-8), html.parser)#找到验证码图片标签,获取其地址 src soup.select_one(div.captcha-row img)[src]# 验证…...
dc-aichat(一款支持ChatGPT+智谱AI+讯飞星火+书生浦语大模型+Kimi.ai+MoonshotAI+豆包AI等大模型的AIGC源码)
dc-aichat 一款支持ChatGPT智谱AI讯飞星火书生浦语大模型Kimi.aiMoonshotAI豆包AI等大模型的AIGC源码。全网最易部署,响应速度最快的AIGC环境。PHP版调用各种模型接口进行问答和对话,采用Stream流模式通信,一边生成一边输出。前端采用EventS…...
检索增强生成
检索增强生成 检索增强生成简介 检索增强生成(RAG)旨在通过检索和整合外部知识来增强大语言模型生成文本的准确性和丰富性,其是一个集成了外部知识库、信息检索器、大语言模型等多个功能模块的系统。 RAG 利用信息检索、深度学习等多种技术…...
操作系统--进程
2.1.1 进程的概念、组成、特征 进程的概念 进程的组成 进程的特征 总结 2.1.2 进程的状态与转换,进程的组织 创建态、就绪态 运行态 阻塞态 终止态 进程状态的转换 进程的组织 链式方式 索引方式 2.1.3 进程控制 如何实现进程控制? 在下面的例子,将PCB2的是state设为1和和把…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
