当前位置: 首页 > news >正文

pytorch实现深度神经网络DNN与卷积神经网络CNN

DNN概述

深度神经网络DNN来自人脑神经元工作的原理,通过在计算机中逻辑抽象出多个节点,接收处理并向后传递信息,实现计算机的自我学习,类比结构见下图:
DNN网络结构与神经元
该方法通过预测输出与实际值的差异不断调整节点参数,从而一步步调整整体预测效果,节点预测输出的过程称为前向传播,根据差异调整参数的过程称为反向传播,而又因为节点计算公式y=wx+b为线性的,如果每个节点都向后传递该值,那最终的输出也可以表示为wx+b,故要体现每个节点的特殊性,需要引入非线性处理,即激活函数,根据在该过程中对学习率步长的设置调整、更新参数依靠样本的选择等区别,产生了多种不同的优化算法

一般的机器学习流程如下图:
机器学习流程图

DNN网络训练

首先导入一般需要的包

import torch.nn as nn
import torch
import pandas as pd
import numpy as np

所有参数和模型的文档都可以在官网查看,查找前记得在选项中选择自己使用pytorch的版本:
选择pytorch版本

数据集导入

大致流程为:
1,使用pandas从文件中读取数据
2,将带标签的数据退化为数组,并转换类型
3,将数组转换为张量
4,数据搬到显卡上进行加速

代码分别如下:

df=pd.read_csv("文件路径")
arr=df.values.astype(np.float32)
ts=torch.tensor(arr)
ts=ts.to('cuda')

划分训练集与测试集

首先根据比例划分训练集与测试集大小,为了避免数据前后关联,最好打乱样本的顺序,然后分别按行读取样本到数据集集合中,代码如下:

tran_size=int(len(ts)*0.8) # 训练集大小,0.8为比例系数
test_size=len(ts)-tran_size # 测试集大小
ts=ts[torch.randperm(ts.size(0)),:] # 打乱数据
train_data=ts[:tran_size] # 训练集数据
test_data=ts[tran_size:] # 测试集数据

搭建网络

根据输入和输出特征搭建网络,需注意相邻网络的输入输出需对应,网络需继承nn.Module模块,继承后重写网络模型到初始化函数中,定义向前传播forward调用网络并返回预测,示例代码如下:

class DNN(nn.Module):def __init__(self):super(DNN, self).__init__() # 初始化父类self.network = nn.Sequential(nn.Linear(28*28, 512), # 第一层线性层nn.ReLU(), # 第一层激活函数nn.Linear(512, 1024), # 第二层线性层nn.Sigmoid(), # 第二层激活函数)def forward(self, x):x = self.network(x) # 第三层无激活函数return xDNN=DNN() # 创建网络对象实例

优化器算法

首先定义损失函数loss_fn,具体的选项见官方文档,然后设置学习速率learning_rateoptimizer优化器,通过torch.optim设置优化算法,示例代码如下:

loss_fn=nn.MSELoss()
learning_rate=0.001
optimizer=torch.optim.Adam(DNN.parameters(), lr=learning_rate)

训练网络

网络的训练往往要经过多次循环,所以通常先设置一个epochs循环次数,为了将学习成果可视化,一般也设置一个列表用于存储损失函数的变化过程,然后对数据的输入输出特征进行划分,将数据除最后一列的值作为输入,最后一列的值升级为二维作为输出,代码如下:

epochs=100
loss_list=[]x=train_data[: , : -1] # 取出所有行,除最后一列的所有列
y=train_data[: , -1].reshape((-1,1))   # 取出所有行,最后一列,升级为二维

最后在循环中计算前向传播预测值,使用损失函数计算损失,反向传播计算梯度,优化模型参数,最后清空梯度,示例代码如下:

for epoch in range(epochs):y_pred=DNN(x)loss=loss_fn(y_pred, y)loss.backward()         # 反向传播optimizer.step()        # 更新参数optimizer.zero_grad()   # 清空梯度缓存print(f"Epoch: {epoch}, Loss:{loss}")   # 打印当前epoch和损失值loss_list.append(loss.item())           # 将损失值添加到列表中

测试方法为:首先声明关闭梯度计算功能,将预测值与真实值进行比较,统计正确信息,示例代码如下:

with torch.no_grad(): # 关闭自动求导功能test_x=test_data[: , : -1]test_y=test_data[: , -1].reshape((-1,1))pred_y=DNN(test_x)

制作数据集DataSet

前面我们使用的是批量梯度下降,每次参数更新使用所有样本,为了提高训练效率,我们在实践中多使用小批量梯度下降,这要求我们分批加载数据,加上我们为了复用代码和更好地管理数据,数据集应该也使用框架管理起来,该功能可以借助DataSet实现。

我们的数据集必须继承DataSet类,同时要重写__init__加载数据集、__getitem__获取数据索引和__len__获取数总量方法,示例代码如下:

from torch.utils.data import Dataset, DataLoaderclass Data(Dataset):def __init__(self,filename):	# 根据文件路径加载数据集super(Data, self).__init__()df = pd.read_csv(filename)arr = df.values.astype(np.float32)ts = torch.tensor(arr)ts = ts.to('cuda')tran_size=int(len(ts)*0.8)ts=ts[torch.randperm(ts.size(0)),:]self.x=ts[:tran_size,:-1]self.y=ts[:tran_size,-1].reshape((-1,1))self.xlength=len(self.x)self.ylength=len(self.y)def __getitem__(self, index):return self.x[index], self.y[index]def __len__(self):return self.xlength,self.ylength

加载数据集时使用Data=Data("路径")创建数据集对象,train_size,test_size= len(dataset)读取文件长度,使用train_loader=DataLoader(dataset,batch_size=100,shuffle=True)test_loader=DataLoader(dataset,batch_size=100,shuffle=False)分别读取训练集和测试集,shuffle表示是否洗牌,训练集可用,测试集无需洗牌。

使用该方法加载数据集,训练测试时直接可用for (x,y) in train_loader循环,因为其中已经包含了两个元素,代码更简洁。

CNN卷积神经网络

该网络顺应机器学习的图像处理潮流而生,传统神经网络需要将图像展为一列,该方式会忽略图像原本二维排布时的关系,更不必说如今的彩色图像可能有多个通道,传统方法更无法处理,基于保留临近位置像素点关系的想法,产生了卷积神经网络。

卷积核

该方法本质上是神经网络的变形,只是其表现形式有所区别,原本的权重w变成了卷积核,图像像素与卷积核逐位相乘求和,再进行偏置计算,原本的激活函数此时变成了池化层pool,直观展示如下:
卷积神经网络
构建网络时使用nn.Conv2d(输入通道数,输出通道,卷积核大小,填充,步长)来添加卷积层,由于卷积核的数值也是训练的一部分,故无需手动设置,由随机初始化完成,使用示例如下:

model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())

其他卷积层见官方文档。

池化层

该层功能与激活函数类似,用于获取特征,比如选出最大值,求平均等操作,如nn.MaxPool1d(),详见官方文档,可惜是英文的,而且信息量太大,每个函数都值得学一会。

输出尺寸计算

此外为了使图像与卷积核大小相符,增加了填充padding,和卷积核的移动步长stride,现在整合所有参数,输入图像尺寸(H,W),卷积核大小(FH,FW),填充p,步幅s,输出图像大小(OH,OW)的计算方法如下:
行计算
列计算方法

滤波器

彩色图像等多通道时使用相应通道数的卷积核即可,但此时卷积核又有了新的名字——滤波器Filter,即输入数据与滤波器通道设置为相同的值时,输出仍为一维,输出时再使用滤波器,即可实现升维。

经典网络

LeNet-5
AlexNet
GoogLeNet
ResNet

答疑—清空梯度

上次模型构建我们讨论了反向传播的具体作用,这次我又对清空梯度这步有了疑问,每个epoch梯度清空,那是否i多次实验彼此独立,又如何收敛呢?经过查询得出如下结论。

首先重申,清空的是梯度,而非模型参数,pytorch默认使用的是梯度累加的方法,即多次训练的梯度累加计算,并允许手动清零,该方式允许硬件条件不允许的项目使用小的batch_size,多次循环累加梯度可以实现较好的效果,而我们手动清零后可以避免多个数据集对模型参数优化的影响,实现全新的二次训练。

总结

本次算是初学pytorch的第二次实践,对于一些方法和原理有了更进一步的理解:
清空梯度避免干扰,小批量时可不清空;
继承方法建立模型和数据集;
卷积核用于保存图像空间上的相邻关系,池化层选特征;
多通道用滤波器降维,学习后再升维。

至此觉得可以算是入门了,但仍然路漫漫,学习网络模型结构的搭建,各种优化算法和损失函数,池化操作,步长卷积核大小的设置,这些的工作才是大头,此外将深度学习与什么相结合,这更是关键。

相关文章:

pytorch实现深度神经网络DNN与卷积神经网络CNN

DNN概述 深度神经网络DNN来自人脑神经元工作的原理,通过在计算机中逻辑抽象出多个节点,接收处理并向后传递信息,实现计算机的自我学习,类比结构见下图: 该方法通过预测输出与实际值的差异不断调整节点参数&#xff0…...

芯片测试-LDO测试

LDO测试 💢LDO的简介💢💢压降💢💢决定压降的主要因素💢 💢LDO的分类及原理💢💢PMOS LDO💢💢PMOS LDO工作过程💢💢PMOS LDO…...

期权懂|期权新手看过来:看跌期权该如何交易?

期权小懂每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 期权新手看过来:看跌期权该如何交易? 一、可以直接购买看跌期权‌: (1)选择预期下跌的标的资产。 (2&#…...

《深入浅出HTTPS​​​​​​​​》读书笔记(8):密码学Hash算法的分类

密码学Hash算法有很多,比如MD5算法、SHA族类算法,MD5早已被证明是不安全的Hash算法了,目前使用最广泛的Hash算法是SHA族类算法。 1)MD5 MD5是一种比较常用的Hash算法,摘要值长度固定是128比特。 MD5算法目前被证明已…...

大语言模型安全,到底是什么的安全

什么是AI安全 自ChatGPT问世以来,市场上涌现出了众多大型语言模型和多样化的AI应用。这些应用和模型在为我们的生活带来便利的同时,也不可避免地面临着安全挑战。AI安全,即人工智能安全,涉及在人工智能系统的开发、部署和使用全过…...

论文2—《基于柔顺控制的智能神经导航手术机器人系统设计》文献阅读分析报告

论文报告:基于卷积神经网络的手术机器人控制系统设计 摘要 本研究针对机器人辅助微创手术中定向障碍和缺乏导航信息的问题,设计了一种智能控制导航手术机器人系统。该系统采用可靠和安全的定位技术、7自由度机械臂以及避免关节角度限制的逆运动学控制策…...

试编写算法将单链表就地逆置(默认是带头节 点,如果是不带头节点地逆置呢?)

编写一个算法来就地逆置一个单链表。默认情况下,链表是带头节点的,但如果链表不带头节点,逆置的过程会有所不同。 第一步:定义逆置函数 根据题目中的“试编写算法将单链表就地逆置”,我们需要: 定义一个…...

FPGA学习笔记#3 Vitis HLS编程规范、数据类型、基本运算

本笔记根据笔者目前的项目确定学习目标,目前主要集中在Vitis HLS上,使用的Vitis HLS版本为2022.2,在windows11下运行,仿真part为xcku15p_CIV-ffva1156-2LV-e,从这一篇开始是HLS的学习进度,主要根据教程&…...

爬虫 - 二手交易电商平台数据采集 (一)

背景: 近期有一个需求需要采集某电商网站平台的商品数据进行分析。因此,我计划先用Python实现一个简单的版本,以快速测试技术的实现可能性,再用PHP实现一个更完整的版本。文章中涉及的技术仅为学习和测试用途,请勿用于商业或非法用…...

“成交量分布指标“,通过筹码精准锁定价格方向+简单找市场支撑压力位 MT4免费公式!

指标名称:成交量分布指标 版本:MT4 ver. 1.32 之前发布的市场分布图不少朋友反馈不错,希望获得其它版本。 这个版本只有MT4的,MT5可以看之前版本,链接: “市场分布图”,精准把握价格动向 更直…...

简记Vue3(四)—— 路由

个人简介 👀个人主页: 前端杂货铺 🙋‍♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...

Python批量合并多个PDF

在日常工作中,处理和合并多个 PDF 文件是一个常见需求,尤其是在需要将大量文件整理成一个完整文档时。本文将详细介绍如何使用 Python 的 PyMuPDF 库来实现批量 PDF 文件合并,并提供针对大文件优化的解决方案。 安装 PyMuPDF 要使用 PyMuPD…...

Linux:vim命令总结及环境配置

文章目录 前言一、vim的基本概念二、vim模式命令解析1. 命令模式1)命令模式到其他模式的转换:2)光标定位:3)其他命令: 2. 插入模式3. 底行模式4. 替换模式5. 视图模式6. 外部命令 三、vim环境的配置1. 环境…...

贪心算法day05(k次取反后最大数组和 田径赛马)

目录 1.k次取反后最大化的数组和 2.按身高排序 3.优势洗牌 1.k次取反后最大化的数组和 题目链接:. - 力扣(LeetCode) 思路: 代码: class Solution {public int largestSumAfterKNegations(int[] nums, int k) {//如…...

默认 iOS 设置使已锁定的 iPhone 容易受到攻击

苹果威胁研究的八个要点 苹果手机间谍软件问题日益严重 了解 Apple 苹果的设备和服务器基础模型发布 尽管人们普遍认为锁定的 iPhone 是安全的,但 iOS 中的默认设置可能会让用户面临严重的隐私和安全风险。 安全研究员 Lambros 通过Pen Test Partners透露&#…...

上海市计算机学会竞赛平台2024年11月月赛丙组

题目描述 在一个棋盘上,有两颗棋子,一颗棋子在第 aa 行第 bb 列,另一个颗棋子在第 xx 行第 yy 列。 每一步,可以选择一个棋子沿行方向移动一个单位,或沿列方向移动一个单位,或同时沿行方向及列方向各移动…...

Python批量设置图片背景为透明

我们日常生活中制作PPT等教学资源时,需要批量去除图片背景,就可以使用 Python 的 rembg 库。 这个库基于神经网络模型,去背景效果较好,可以批量处理png, jpg, jpeg等图片。采用以下代码可以批量处理当前目录下的所有图片&#xf…...

Vue CLI 脚手架

cli脚手架创建项目步骤 全局安装(一次):yarn global add vue/cli 无法识别yarn的要先安装yarn;终端执行npm install -g yarn 查看Vue版本:vue --version 这里有问题(success上方有warning) 报错:‘vue’不是内部或外部…...

Linux【基础篇】

-- 原生罪 linux的入门安装学习 什么是操作系统? 用户通过操作系统和计算机硬件联系使用。桥梁~ 什么是Linux? 他是一套开放源代码(在互联网上找到Linux系统的源代码,C语言写出的软件),可以自由 传播&…...

多线程环境下安全地使用 SimpleDateFormat的常见方法

文章目录 1. 使用局部变量&#xff08;每个线程独立一个实例&#xff09;2. 使用 ThreadLocal<SimpleDateFormat>3. 使用 DateTimeFormatter&#xff08;Java 8 及以上&#xff09;4. 使用 DateFormat 子类&#xff08;如 FastDateFormat&#xff09;5. 使用 synchronize…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...