当前位置: 首页 > news >正文

pytorch实现深度神经网络DNN与卷积神经网络CNN

DNN概述

深度神经网络DNN来自人脑神经元工作的原理,通过在计算机中逻辑抽象出多个节点,接收处理并向后传递信息,实现计算机的自我学习,类比结构见下图:
DNN网络结构与神经元
该方法通过预测输出与实际值的差异不断调整节点参数,从而一步步调整整体预测效果,节点预测输出的过程称为前向传播,根据差异调整参数的过程称为反向传播,而又因为节点计算公式y=wx+b为线性的,如果每个节点都向后传递该值,那最终的输出也可以表示为wx+b,故要体现每个节点的特殊性,需要引入非线性处理,即激活函数,根据在该过程中对学习率步长的设置调整、更新参数依靠样本的选择等区别,产生了多种不同的优化算法

一般的机器学习流程如下图:
机器学习流程图

DNN网络训练

首先导入一般需要的包

import torch.nn as nn
import torch
import pandas as pd
import numpy as np

所有参数和模型的文档都可以在官网查看,查找前记得在选项中选择自己使用pytorch的版本:
选择pytorch版本

数据集导入

大致流程为:
1,使用pandas从文件中读取数据
2,将带标签的数据退化为数组,并转换类型
3,将数组转换为张量
4,数据搬到显卡上进行加速

代码分别如下:

df=pd.read_csv("文件路径")
arr=df.values.astype(np.float32)
ts=torch.tensor(arr)
ts=ts.to('cuda')

划分训练集与测试集

首先根据比例划分训练集与测试集大小,为了避免数据前后关联,最好打乱样本的顺序,然后分别按行读取样本到数据集集合中,代码如下:

tran_size=int(len(ts)*0.8) # 训练集大小,0.8为比例系数
test_size=len(ts)-tran_size # 测试集大小
ts=ts[torch.randperm(ts.size(0)),:] # 打乱数据
train_data=ts[:tran_size] # 训练集数据
test_data=ts[tran_size:] # 测试集数据

搭建网络

根据输入和输出特征搭建网络,需注意相邻网络的输入输出需对应,网络需继承nn.Module模块,继承后重写网络模型到初始化函数中,定义向前传播forward调用网络并返回预测,示例代码如下:

class DNN(nn.Module):def __init__(self):super(DNN, self).__init__() # 初始化父类self.network = nn.Sequential(nn.Linear(28*28, 512), # 第一层线性层nn.ReLU(), # 第一层激活函数nn.Linear(512, 1024), # 第二层线性层nn.Sigmoid(), # 第二层激活函数)def forward(self, x):x = self.network(x) # 第三层无激活函数return xDNN=DNN() # 创建网络对象实例

优化器算法

首先定义损失函数loss_fn,具体的选项见官方文档,然后设置学习速率learning_rateoptimizer优化器,通过torch.optim设置优化算法,示例代码如下:

loss_fn=nn.MSELoss()
learning_rate=0.001
optimizer=torch.optim.Adam(DNN.parameters(), lr=learning_rate)

训练网络

网络的训练往往要经过多次循环,所以通常先设置一个epochs循环次数,为了将学习成果可视化,一般也设置一个列表用于存储损失函数的变化过程,然后对数据的输入输出特征进行划分,将数据除最后一列的值作为输入,最后一列的值升级为二维作为输出,代码如下:

epochs=100
loss_list=[]x=train_data[: , : -1] # 取出所有行,除最后一列的所有列
y=train_data[: , -1].reshape((-1,1))   # 取出所有行,最后一列,升级为二维

最后在循环中计算前向传播预测值,使用损失函数计算损失,反向传播计算梯度,优化模型参数,最后清空梯度,示例代码如下:

for epoch in range(epochs):y_pred=DNN(x)loss=loss_fn(y_pred, y)loss.backward()         # 反向传播optimizer.step()        # 更新参数optimizer.zero_grad()   # 清空梯度缓存print(f"Epoch: {epoch}, Loss:{loss}")   # 打印当前epoch和损失值loss_list.append(loss.item())           # 将损失值添加到列表中

测试方法为:首先声明关闭梯度计算功能,将预测值与真实值进行比较,统计正确信息,示例代码如下:

with torch.no_grad(): # 关闭自动求导功能test_x=test_data[: , : -1]test_y=test_data[: , -1].reshape((-1,1))pred_y=DNN(test_x)

制作数据集DataSet

前面我们使用的是批量梯度下降,每次参数更新使用所有样本,为了提高训练效率,我们在实践中多使用小批量梯度下降,这要求我们分批加载数据,加上我们为了复用代码和更好地管理数据,数据集应该也使用框架管理起来,该功能可以借助DataSet实现。

我们的数据集必须继承DataSet类,同时要重写__init__加载数据集、__getitem__获取数据索引和__len__获取数总量方法,示例代码如下:

from torch.utils.data import Dataset, DataLoaderclass Data(Dataset):def __init__(self,filename):	# 根据文件路径加载数据集super(Data, self).__init__()df = pd.read_csv(filename)arr = df.values.astype(np.float32)ts = torch.tensor(arr)ts = ts.to('cuda')tran_size=int(len(ts)*0.8)ts=ts[torch.randperm(ts.size(0)),:]self.x=ts[:tran_size,:-1]self.y=ts[:tran_size,-1].reshape((-1,1))self.xlength=len(self.x)self.ylength=len(self.y)def __getitem__(self, index):return self.x[index], self.y[index]def __len__(self):return self.xlength,self.ylength

加载数据集时使用Data=Data("路径")创建数据集对象,train_size,test_size= len(dataset)读取文件长度,使用train_loader=DataLoader(dataset,batch_size=100,shuffle=True)test_loader=DataLoader(dataset,batch_size=100,shuffle=False)分别读取训练集和测试集,shuffle表示是否洗牌,训练集可用,测试集无需洗牌。

使用该方法加载数据集,训练测试时直接可用for (x,y) in train_loader循环,因为其中已经包含了两个元素,代码更简洁。

CNN卷积神经网络

该网络顺应机器学习的图像处理潮流而生,传统神经网络需要将图像展为一列,该方式会忽略图像原本二维排布时的关系,更不必说如今的彩色图像可能有多个通道,传统方法更无法处理,基于保留临近位置像素点关系的想法,产生了卷积神经网络。

卷积核

该方法本质上是神经网络的变形,只是其表现形式有所区别,原本的权重w变成了卷积核,图像像素与卷积核逐位相乘求和,再进行偏置计算,原本的激活函数此时变成了池化层pool,直观展示如下:
卷积神经网络
构建网络时使用nn.Conv2d(输入通道数,输出通道,卷积核大小,填充,步长)来添加卷积层,由于卷积核的数值也是训练的一部分,故无需手动设置,由随机初始化完成,使用示例如下:

model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())

其他卷积层见官方文档。

池化层

该层功能与激活函数类似,用于获取特征,比如选出最大值,求平均等操作,如nn.MaxPool1d(),详见官方文档,可惜是英文的,而且信息量太大,每个函数都值得学一会。

输出尺寸计算

此外为了使图像与卷积核大小相符,增加了填充padding,和卷积核的移动步长stride,现在整合所有参数,输入图像尺寸(H,W),卷积核大小(FH,FW),填充p,步幅s,输出图像大小(OH,OW)的计算方法如下:
行计算
列计算方法

滤波器

彩色图像等多通道时使用相应通道数的卷积核即可,但此时卷积核又有了新的名字——滤波器Filter,即输入数据与滤波器通道设置为相同的值时,输出仍为一维,输出时再使用滤波器,即可实现升维。

经典网络

LeNet-5
AlexNet
GoogLeNet
ResNet

答疑—清空梯度

上次模型构建我们讨论了反向传播的具体作用,这次我又对清空梯度这步有了疑问,每个epoch梯度清空,那是否i多次实验彼此独立,又如何收敛呢?经过查询得出如下结论。

首先重申,清空的是梯度,而非模型参数,pytorch默认使用的是梯度累加的方法,即多次训练的梯度累加计算,并允许手动清零,该方式允许硬件条件不允许的项目使用小的batch_size,多次循环累加梯度可以实现较好的效果,而我们手动清零后可以避免多个数据集对模型参数优化的影响,实现全新的二次训练。

总结

本次算是初学pytorch的第二次实践,对于一些方法和原理有了更进一步的理解:
清空梯度避免干扰,小批量时可不清空;
继承方法建立模型和数据集;
卷积核用于保存图像空间上的相邻关系,池化层选特征;
多通道用滤波器降维,学习后再升维。

至此觉得可以算是入门了,但仍然路漫漫,学习网络模型结构的搭建,各种优化算法和损失函数,池化操作,步长卷积核大小的设置,这些的工作才是大头,此外将深度学习与什么相结合,这更是关键。

相关文章:

pytorch实现深度神经网络DNN与卷积神经网络CNN

DNN概述 深度神经网络DNN来自人脑神经元工作的原理,通过在计算机中逻辑抽象出多个节点,接收处理并向后传递信息,实现计算机的自我学习,类比结构见下图: 该方法通过预测输出与实际值的差异不断调整节点参数&#xff0…...

芯片测试-LDO测试

LDO测试 💢LDO的简介💢💢压降💢💢决定压降的主要因素💢 💢LDO的分类及原理💢💢PMOS LDO💢💢PMOS LDO工作过程💢💢PMOS LDO…...

期权懂|期权新手看过来:看跌期权该如何交易?

期权小懂每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 期权新手看过来:看跌期权该如何交易? 一、可以直接购买看跌期权‌: (1)选择预期下跌的标的资产。 (2&#…...

《深入浅出HTTPS​​​​​​​​》读书笔记(8):密码学Hash算法的分类

密码学Hash算法有很多,比如MD5算法、SHA族类算法,MD5早已被证明是不安全的Hash算法了,目前使用最广泛的Hash算法是SHA族类算法。 1)MD5 MD5是一种比较常用的Hash算法,摘要值长度固定是128比特。 MD5算法目前被证明已…...

大语言模型安全,到底是什么的安全

什么是AI安全 自ChatGPT问世以来,市场上涌现出了众多大型语言模型和多样化的AI应用。这些应用和模型在为我们的生活带来便利的同时,也不可避免地面临着安全挑战。AI安全,即人工智能安全,涉及在人工智能系统的开发、部署和使用全过…...

论文2—《基于柔顺控制的智能神经导航手术机器人系统设计》文献阅读分析报告

论文报告:基于卷积神经网络的手术机器人控制系统设计 摘要 本研究针对机器人辅助微创手术中定向障碍和缺乏导航信息的问题,设计了一种智能控制导航手术机器人系统。该系统采用可靠和安全的定位技术、7自由度机械臂以及避免关节角度限制的逆运动学控制策…...

试编写算法将单链表就地逆置(默认是带头节 点,如果是不带头节点地逆置呢?)

编写一个算法来就地逆置一个单链表。默认情况下,链表是带头节点的,但如果链表不带头节点,逆置的过程会有所不同。 第一步:定义逆置函数 根据题目中的“试编写算法将单链表就地逆置”,我们需要: 定义一个…...

FPGA学习笔记#3 Vitis HLS编程规范、数据类型、基本运算

本笔记根据笔者目前的项目确定学习目标,目前主要集中在Vitis HLS上,使用的Vitis HLS版本为2022.2,在windows11下运行,仿真part为xcku15p_CIV-ffva1156-2LV-e,从这一篇开始是HLS的学习进度,主要根据教程&…...

爬虫 - 二手交易电商平台数据采集 (一)

背景: 近期有一个需求需要采集某电商网站平台的商品数据进行分析。因此,我计划先用Python实现一个简单的版本,以快速测试技术的实现可能性,再用PHP实现一个更完整的版本。文章中涉及的技术仅为学习和测试用途,请勿用于商业或非法用…...

“成交量分布指标“,通过筹码精准锁定价格方向+简单找市场支撑压力位 MT4免费公式!

指标名称:成交量分布指标 版本:MT4 ver. 1.32 之前发布的市场分布图不少朋友反馈不错,希望获得其它版本。 这个版本只有MT4的,MT5可以看之前版本,链接: “市场分布图”,精准把握价格动向 更直…...

简记Vue3(四)—— 路由

个人简介 👀个人主页: 前端杂货铺 🙋‍♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...

Python批量合并多个PDF

在日常工作中,处理和合并多个 PDF 文件是一个常见需求,尤其是在需要将大量文件整理成一个完整文档时。本文将详细介绍如何使用 Python 的 PyMuPDF 库来实现批量 PDF 文件合并,并提供针对大文件优化的解决方案。 安装 PyMuPDF 要使用 PyMuPD…...

Linux:vim命令总结及环境配置

文章目录 前言一、vim的基本概念二、vim模式命令解析1. 命令模式1)命令模式到其他模式的转换:2)光标定位:3)其他命令: 2. 插入模式3. 底行模式4. 替换模式5. 视图模式6. 外部命令 三、vim环境的配置1. 环境…...

贪心算法day05(k次取反后最大数组和 田径赛马)

目录 1.k次取反后最大化的数组和 2.按身高排序 3.优势洗牌 1.k次取反后最大化的数组和 题目链接:. - 力扣(LeetCode) 思路: 代码: class Solution {public int largestSumAfterKNegations(int[] nums, int k) {//如…...

默认 iOS 设置使已锁定的 iPhone 容易受到攻击

苹果威胁研究的八个要点 苹果手机间谍软件问题日益严重 了解 Apple 苹果的设备和服务器基础模型发布 尽管人们普遍认为锁定的 iPhone 是安全的,但 iOS 中的默认设置可能会让用户面临严重的隐私和安全风险。 安全研究员 Lambros 通过Pen Test Partners透露&#…...

上海市计算机学会竞赛平台2024年11月月赛丙组

题目描述 在一个棋盘上,有两颗棋子,一颗棋子在第 aa 行第 bb 列,另一个颗棋子在第 xx 行第 yy 列。 每一步,可以选择一个棋子沿行方向移动一个单位,或沿列方向移动一个单位,或同时沿行方向及列方向各移动…...

Python批量设置图片背景为透明

我们日常生活中制作PPT等教学资源时,需要批量去除图片背景,就可以使用 Python 的 rembg 库。 这个库基于神经网络模型,去背景效果较好,可以批量处理png, jpg, jpeg等图片。采用以下代码可以批量处理当前目录下的所有图片&#xf…...

Vue CLI 脚手架

cli脚手架创建项目步骤 全局安装(一次):yarn global add vue/cli 无法识别yarn的要先安装yarn;终端执行npm install -g yarn 查看Vue版本:vue --version 这里有问题(success上方有warning) 报错:‘vue’不是内部或外部…...

Linux【基础篇】

-- 原生罪 linux的入门安装学习 什么是操作系统? 用户通过操作系统和计算机硬件联系使用。桥梁~ 什么是Linux? 他是一套开放源代码(在互联网上找到Linux系统的源代码,C语言写出的软件),可以自由 传播&…...

多线程环境下安全地使用 SimpleDateFormat的常见方法

文章目录 1. 使用局部变量&#xff08;每个线程独立一个实例&#xff09;2. 使用 ThreadLocal<SimpleDateFormat>3. 使用 DateTimeFormatter&#xff08;Java 8 及以上&#xff09;4. 使用 DateFormat 子类&#xff08;如 FastDateFormat&#xff09;5. 使用 synchronize…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...