当前位置: 首页 > news >正文

计算机视觉基础:OpenCV库详解

💓 博客主页:瑕疵的CSDN主页
📝 Gitee主页:瑕疵的gitee主页
⏩ 文章专栏:《热点资讯》

计算机视觉基础:OpenCV库详解

计算机视觉基础:OpenCV库详解

  • 计算机视觉基础:OpenCV库详解
    • 引言
    • OpenCV 概述
      • 什么是 OpenCV
      • OpenCV 的应用场景
    • 安装和配置 OpenCV
      • 安装 OpenCV
      • 验证安装
    • OpenCV 基础
      • 读取和显示图像
      • 图像的基本操作
        • 获取图像属性
        • 图像裁剪和复制
      • 图像处理
        • 灰度化
        • 高斯模糊
        • 边缘检测
      • 视频处理
        • 读取和显示视频
        • 视频录制
    • OpenCV 高级功能
      • 物体检测
        • Haar 级联分类器
      • 特征点检测
        • SIFT 和 SURF
      • 图像分割
        • GrabCut
    • 实战案例分析
      • 人脸识别
      • 物体跟踪
    • 总结
    • 参考资料

引言

计算机视觉是人工智能的一个重要分支,旨在使计算机能够理解和解释图像和视频内容。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,提供了丰富的图像处理和计算机视觉功能。本文将详细介绍 OpenCV 的基本概念、安装配置、核心功能以及实际应用,帮助读者快速上手计算机视觉开发。

OpenCV 概述

什么是 OpenCV

OpenCV 是一个开源的计算机视觉库,支持多种编程语言(如 C++、Python、Java 等),并在多个平台上可用(如 Windows、Linux、macOS)。OpenCV 提供了大量的图像处理和计算机视觉算法,广泛应用于图像识别、物体检测、人脸识别等领域。

OpenCV 的应用场景

  • 图像处理:如图像增强、滤波、边缘检测等。
  • 物体检测:如行人检测、车辆检测等。
  • 人脸识别:如人脸检测、人脸识别等。
  • 视频分析:如运动检测、背景减除等。

安装和配置 OpenCV

安装 OpenCV

OpenCV 可以通过 pip 工具轻松安装。

pip install opencv-python

验证安装

安装完成后,可以通过以下代码验证 OpenCV 是否安装成功:

import cv2
print(cv2.__version__)

OpenCV 基础

读取和显示图像

OpenCV 提供了读取和显示图像的基本功能。

import cv2# 读取图像
image = cv2.imread('image.jpg')# 显示图像
cv2.imshow('Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像的基本操作

获取图像属性
  • 形状:获取图像的高度、宽度和通道数。
  • 像素值:获取和设置特定像素的值。
# 获取图像的形状
height, width, channels = image.shape
print(f'Height: {height}, Width: {width}, Channels: {channels}')# 获取特定像素的值
pixel_value = image[100, 100]
print(f'Pixel Value at (100, 100): {pixel_value}')# 设置特定像素的值
image[100, 100] = [0, 255, 0]  # 设置为绿色
图像裁剪和复制
  • 裁剪:提取图像的一部分。
  • 复制:创建图像的副本。
# 裁剪图像
cropped_image = image[50:150, 50:150]# 复制图像
copied_image = image.copy()

图像处理

灰度化

将彩色图像转换为灰度图像。

# 转换为灰度图像
grey_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 显示灰度图像
cv2.imshow('Grey Image', grey_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
高斯模糊

对图像进行高斯模糊处理。

# 高斯模糊
blurred_image = cv2.GaussianBlur(image, (5, 5), 0)# 显示模糊图像
cv2.imshow('Blurred Image', blurred_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
边缘检测

使用 Canny 算法检测图像的边缘。

# 边缘检测
edges = cv2.Canny(image, 100, 200)# 显示边缘图像
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

视频处理

读取和显示视频

OpenCV 可以读取和显示视频文件。

import cv2# 读取视频
cap = cv2.VideoCapture('video.mp4')while cap.isOpened():ret, frame = cap.read()if not ret:break# 显示帧cv2.imshow('Frame', frame)# 按 q 键退出if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源
cap.release()
cv2.destroyAllWindows()
视频录制

OpenCV 可以录制视频。

import cv2# 初始化视频捕获
cap = cv2.VideoCapture(0)# 定义编码器和输出文件
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 20.0, (640, 480))while cap.isOpened():ret, frame = cap.read()if not ret:break# 写入帧out.write(frame)# 显示帧cv2.imshow('Frame', frame)# 按 q 键退出if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()

OpenCV 高级功能

物体检测

Haar 级联分类器

Haar 级联分类器是一种常用的物体检测方法,可以用于检测人脸、眼睛等。

import cv2# 加载 Haar 级联分类器
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')# 读取图像
image = cv2.imread('image.jpg')# 转换为灰度图像
grey_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 检测人脸
faces = face_cascade.detectMultiScale(grey_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))# 绘制矩形框
for (x, y, w, h) in faces:cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)# 显示图像
cv2.imshow('Face Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

特征点检测

SIFT 和 SURF

SIFT(Scale-Invariant Feature Transform)和 SURF(Speeded-Up Robust Features)是常用的特征点检测算法。

import cv2# 读取图像
image = cv2.imread('image.jpg')# 初始化 SIFT 检测器
sift = cv2.xfeatures2d.SIFT_create()# 检测特征点
keypoints, descriptors = sift.detectAndCompute(image, None)# 绘制特征点
image_with_keypoints = cv2.drawKeypoints(image, keypoints, None)# 显示图像
cv2.imshow('SIFT Keypoints', image_with_keypoints)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像分割

GrabCut

GrabCut 是一种基于图割的图像分割算法,用于从背景中分离前景。

import cv2# 读取图像
image = cv2.imread('image.jpg')# 初始化掩码
mask = np.zeros(image.shape[:2], np.uint8)# 定义前景和背景的初始矩形
rect = (50, 50, 300, 300)# 初始化前景和背景模型
bgd_model = np.zeros((1, 65), np.float64)
fgd_model = np.zeros((1, 65), np.float64)# 运行 GrabCut 算法
cv2.grabCut(image, mask, rect, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_RECT)# 将掩码转换为二值图像
mask2 = np.where((mask==2)|(mask==0), 0, 1).astype('uint8')# 应用掩码
segmented_image = image * mask2[:, :, np.newaxis]# 显示分割后的图像
cv2.imshow('Segmented Image', segmented_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

实战案例分析

人脸识别

假设我们有一个包含人脸的照片,需要进行人脸识别。

import cv2# 加载 Haar 级联分类器
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')# 读取图像
image = cv2.imread('people.jpg')# 转换为灰度图像
grey_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 检测人脸
faces = face_cascade.detectMultiScale(grey_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))# 绘制矩形框
for (x, y, w, h) in faces:cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)# 保存结果
cv2.imwrite('detected_faces.jpg', image)

物体跟踪

假设我们有一个视频,需要跟踪视频中的移动物体。

import cv2# 初始化视频捕获
cap = cv2.VideoCapture('video.mp4')# 初始化背景减除器
fgbg = cv2.createBackgroundSubtractorMOG2()while cap.isOpened():ret, frame = cap.read()if not ret:break# 应用背景减除器fgmask = fgbg.apply(frame)# 显示帧cv2.imshow('Frame', frame)cv2.imshow('FG Mask', fgmask)# 按 q 键退出if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源
cap.release()
cv2.destroyAllWindows()

总结

通过本文,我们深入了解了 OpenCV 的基本概念、安装配置、核心功能以及实际应用。OpenCV 是一个强大的计算机视觉库,提供了丰富的图像处理和计算机视觉功能。希望本文能帮助读者更好地理解和应用 OpenCV,提升计算机视觉开发能力。

参考资料

  • OpenCV 官方文档
  • 计算机视觉入门教程
  • OpenCV 实战案例

相关文章:

计算机视觉基础:OpenCV库详解

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 计算机视觉基础:OpenCV库详解 计算机视觉基础:OpenCV库详解 计算机视觉基础:OpenCV库详解 引…...

UI自动化测试工具(超详细总结)

🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 常用工具 1、QTP:商业化的功能测试工具,收费,可用于web自动化测试 2、Robot Framework:基于Python可扩展的关…...

AJAX 全面教程:从基础到高级

AJAX 全面教程:从基础到高级 目录 什么是 AJAXAJAX 的工作原理AJAX 的主要对象AJAX 的基本用法AJAX 与 JSONAJAX 的高级用法AJAX 的错误处理AJAX 的性能优化AJAX 的安全性AJAX 的应用场景总结与展望 什么是 AJAX AJAX(Asynchronous JavaScript and XML…...

ONLYOFFICE 8.2测评:功能增强与体验优化,打造高效办公新体验

引言 随着数字化办公需求的不断增长,在线办公软件市场竞争愈加激烈。在众多办公软件中,ONLYOFFICE 无疑是一个颇具特色的选择。它不仅支持文档、表格和演示文稿的在线编辑,还通过开放的接口与强大的协作功能,吸引了众多企业和个人…...

Science Robotics 综述揭示演化研究新范式,从机器人复活远古生物!

在地球46亿年的漫长历史长河中,生命的演化过程充满着未解之谜。如何从零散的化石证据中还原古生物的真实面貌?如何理解关键演化节点的具体过程?10月23日,Science Robotics发表重磅综述,首次系统性提出"古生物启发…...

uni-app表格带分页,后端处理过每页显示多少条

uni-app表格带分页&#xff0c;后端处理过每页可以显示多少条&#xff0c;一句设置好了每页显示的数据量&#xff0c;不需要钱的在进行操作&#xff0c;在进行对数据的截取 <th-table :column"column" :listData"data" :checkSort"checkSort"…...

基于STM32设计的矿山环境监测系统(NBIOT)_262

文章目录 一、前言1.1 项目介绍【1】开发背景【2】研究的意义【3】最终实现需求【4】项目硬件模块组成1.2 设计思路【1】整体设计思路【2】上位机开发思路1.3 项目开发背景【1】选题的意义【2】摘要【3】国内外相关研究现状【5】参考文献1.4 开发工具的选择【1】设备端开发【2】…...

【初阶数据结构与算法】线性表之链表的分类以及双链表的定义与实现

文章目录 一、链表的分类二、双链表的实现1.双链表结构的定义2.双链表的初始化和销毁初始化函数1初始化函数2销毁函数 3.双链表的打印以及节点的申请打印函数节点的申请 4.双链表的头插和尾插头插函数尾插函数 5.双链表的查找和判空查找函数判空函数 6.双链表的头删和尾删头删函…...

219页华为供应链管理:市场预测SOP计划、销售预测与存货管理精要

一、华为ISC供应链管理 华为的集成供应链&#xff08;ISC&#xff09;领先实践和SISC&#xff08;Siyuan Integrated Supply Chain&#xff09;架构体现了其在供应链管理领域的深度和广度&#xff0c;以下是7点关键介绍&#xff1a; 全面的供应链视野&#xff1a;华为ISC涵盖…...

mac 安装指定的node和npm版本

mac 安装指定的node和npm版本 0.添加映像&#xff1a; export N_NODE_MIRRORhttps://npmmirror.com/mirrors/node 1、使用 npm 全局安装 n npm install -g n 如果报了sudo chown -R 502:20 "/Users/xxx/.npm" sudo npm install -g n 2、根据需求安装指定版本的 node …...

为什么分布式光伏规模是6MW为界点?

安科瑞 Acrel-Tu1990 最近&#xff0c;能源局颁布了一项规定&#xff0c;明确指出6兆瓦&#xff08;MW&#xff09;及以上的分布式光伏电站必须实现自发自用&#xff0c;自行消纳电力。多个省份的能源局进一步规定&#xff0c;规模超过6兆瓦的电站需按照集中式管理进行操作。此…...

arm64架构的linux 配置vm_page_prot方式

在 ARM64 架构上&#xff0c;通过 vm_page_prot 属性可以修改 UIO 映射内存的访问权限及缓存策略&#xff0c;常见的有非缓存&#xff08;Non-cached&#xff09;、写合并&#xff08;Write Combine&#xff09;等。下面是 ARM64 常用的 vm_page_prot 设置及其对应的操作方式。…...

vue3 + naive ui card header 和 title 冲突 bug

背景描述 最近发现一个 naive ui 上的问题&#xff0c;之前好好的&#xff0c;某一次升级后就出现了一个 bug&#xff0c;Modal 使用 card 布局后&#xff0c;Header Solt 下面的内容不见了&#xff0c;变成了 title&#xff0c;因为这个 solt 里面是有操作 action 的&#xf…...

Ubuntu 22.04.5 LTS配置 bond

本次纯实验&#xff0c;不会讲解bond功能&#xff0c;配置bond mode 1 和 mode 4 如何配置 确定内核模块是否加载 实验使用root用户权限&#xff0c;非root用户使用sudo 调用root权限 rootubuntu22:~# lsmod | grep bonding rootubuntu22:~# modprobe bonding rootubuntu22:~# …...

100种算法【Python版】第58篇——滤波算法之卡尔曼滤波

本文目录 1 算法步骤2 算法示例2.1 示例描述2.2 python代码3 算法应用:二维运动目标跟踪问题滤波算法是用于从信号中提取有用信息、去除噪声或估计系统状态的技术。在时间序列分析、信号处理和控制系统中,滤波算法起着关键作用。 1 算法步骤 卡尔曼滤波(Kalman Filter)的…...

关于几种卷积

1*1卷积 分组卷积&深度可分离卷积 空洞卷积、膨胀卷积 转置卷积 https://zhuanlan.zhihu.com/p/80041030 https://yinguobing.com/separable-convolution/#fn2 11的卷积可以理解为对通道进行加权&#xff0c;对于一个通道来说&#xff0c;每个像素点加权是一样的&am…...

51单片机教程(五)- LED灯闪烁

1 项目分析 让输入/输出口的P1.0或P1.0~P1.7连接的LED灯闪烁。 2 技术准备 1、C语言知识点 1 运算符 1 算术运算符 #include <stdio.h>int main(){// 算术运算符int a 13;int b 6;printf("%d\n", ab); printf("%d\n", a-b); printf("%…...

VUE3中Element table表头动态展示合计信息(不是表尾合计)

一、背景 原型上需要对两个字段动态合计&#xff0c;输出摘要信息 原先想到是的Element的 :summary-method&#xff0c;发现不是动态&#xff0c;所以换监听来实现 二、vue代码 <el-table v-model"loading" :data"itemList"><el-table-column la…...

git重置的四种类型(Git Reset)

git区域概念 1.工作区:IDEA中红色显示文件为工作区中的文件 (还未使用git add命令加入暂存区) 2.暂存区:IDEA中绿色(本次还未提交的新增的文件显示为绿色)或者蓝色(本次修改的之前版本提交的文件但本次还未提交的文件显示为蓝色)显示的文件为暂存区中的文件&#xff08;使用了…...

【Java集合面试1】说说Java中的HashMap原理?

Java中的HashMap是一种基于哈希表的Map接口实现&#xff0c;它存储的内容是键值对&#xff08;key-value&#xff09;映射。HashMap允许空键&#xff08;null&#xff09;和空值&#xff08;null&#xff09;&#xff0c;并且它的键值对没有顺序。以下是HashMap的一些关键工作原…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...