机器学习(基础1)
数据集
sklearn玩具数据集
数据量小,数据在sklearn库的本地,只要安装了sklearn,不用上网就可以获取

sklearn现实世界数据集
数据量大,数据只能通过网络获取(为国外数据集,下载需要梯子)

sklearn加载玩具数据集
示例:获取鸢尾花数据
以鸢尾花数据集为例:
from sklearn.datasets import load_iris
iris = load_iris() # 鸢尾花数据
print(iris.data) # 特征数据
print(iris.feature_names) # 特征描述
print(iris.target) # 目标形状
print(iris.target_names) # 目标描述

![]()


特征有:
花萼长 sepal length;花萼宽sepal width; 花瓣长 petal length;花瓣宽 petal width。
三分类:
0-Setosa山鸢尾
1-Versicolour变色鸢尾
2-Virginica维吉尼亚鸢尾
可使用numpy,pandas将特征和目标一起显示出来
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
feature = iris.data
target = iris.target
target.shape = (len(target),1)
data = np.hstack([feature,target])
cols = iris.feature_names
cols.append('target')
arr = pd.DataFrame(data,columns=cols)
print(arr)

sklearn获取现实世界数据集
所有现实世界数据,通过网络才能下载后,默认保存的目录可以使用下面api获取。实际上就是保存到home目录
from sklearn import datasets
datasets.get_data_home() #查看数据集默认存放的位置
获取现实世界数据需要"科学上网"。
示例:获取20分类新闻数据
from sklearn.datasets import fetch_20newsgroups #这是一个20分类的数据
news = fetch_20newsgroups(data_home='./src',subset='all')
print(len(news.data)) #18846
print(news.target.shape) #(18846,)
print(len(news.target_names)) #20
print(len(news.filenames)) #18846
本地csv数据
创建csv文件
方式1:打开计事本,写出如下数据,数据之间使用英文下的逗号, 保存文件后把后缀名改为csv
csv文件可以使用excel打开

方式2:创建excel 文件, 填写数据,以csv为后缀保存文件.

pandas加载csv
使用pandas的read_csv(“文件路径”)函数可以加载csv文件,得到的结果为数据的DataFrame形式
语法:
pd.read_csv("./src/ss.csv")

数据集的划分
(1) 函数
sklearn.model_selection.train_test_split(*arrays,**options)
参数
(1) *array
这里用于接收1到多个"列表、numpy数组、稀疏矩阵或padas中的DataFrame"。
(2) **options, 重要的关键字参数有:
test_size 值为0.0到1.0的小数,表示划分后测试集占的比例
random_state 值为任意整数,表示随机种子,使用相同的随机种子对相同的数据集多次划分结果是相同的。否则多半不同
2 返回值说明
返回值为列表list, 列表长度与形参array接收到的参数数量相关联, 形参array接收到的是什么类型,list中对应被划分出来的两部分就是什么类型
(2)示例
列表数据集划分
因为随机种子都使用了相同的整数(22),所以划分的划分的情况是相同的。
示例:
from sklearn.model_selection import train_test_split
data1 = [1,2,3,4,5]
data2 = ['1a','2a','3a','4a','5a']
a,b = train_test_split(data1,train_size=0.8,random_state=22)
print(a,b)a,b = train_test_split(data2,train_size=0.8,random_state=22)
print(a,b)x_train,x_test,y_train,y_test = train_test_split(data1,data2,train_size=0.8,random_state=22)
print(x_train,x_test)
print(y_train,y_test)

当train_test_split函数参数传入两个data时,会将两个data,按照二八分,分割的值也是对应起来的,如,data1和data2中,1对应1a,2对应2a,分割后,也是相对应得
ndarray数据集划分
划分前和划分后的数据类型是相同的 data1为list,划分后的a、b也是list data2为ndarray,划分后的c、d也是ndarray
from sklearn.model_selection import train_test_split
import numpy as np
data1 = [1,2,3,4,5]
data2 = np.array(['1a','2a','3a','4a','5a'])
x_train,x_test,y_train,y_test = train_test_split(data1,data2,train_size=0.8,random_state=22)
print(x_train,x_test)
print(y_train,y_test)
print(type(x_train),type(x_test),type(y_train),type(y_test))

二维数组数据集划分
train_test_split只划分第一维度,第二维度保持不变
from sklearn.model_selection import train_test_split
import numpy as np
data1 = np.arange(1,16,1)
data1.shape = (5,3)
print(data1)
x_train,x_test = train_test_split(data1,train_size=0.8,random_state=22)
print('x_train=\n',x_train)
print('x_test=\n',x_test)

DataFrame数据集划分
可以划分DataFrame, 划分后的两部分还是DataFrame
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
data1 = np.arange(1,16,1).reshape(5,3)
data1 = pd.DataFrame(data1,index=[1,2,3,4,5],columns=['one','two','three'])
print(data1)x_train,x_test = train_test_split(data1,train_size=0.8,random_state=22)
print(x_train)
print(x_test)



字典数据集划分
可以划分非稀疏矩阵
用于将字典列表转换为特征向量。这个转换器主要用于处理类别数据和数值数据的混合型数据集
1.对于类别特征DictVectorizer 会为每个不同的类别创建一个新的二进制特征,如果原始数据中的某个样本具有该类别,则对应的二进制特征值为1,否则为0。
2.对于数值特征保持不变,直接作为特征的一部分
示例:
from sklearn.feature_extraction import DictVectorizer
data = [{'city':'成都', 'age':30, 'temperature':20}, {'city':'重庆','age':33, 'temperature':60}, {'city':'北京', 'age':42, 'temperature':80},{'city':'上海', 'age':22, 'temperature':70},{'city':'成都', 'age':72, 'temperature':40},]
model = DictVectorizer(sparse=False)#sparse=False表示返回一个完整的矩阵,sparse=True表示返回一个稀疏矩阵
data1 = model.fit_transform(data)#提取特征
print('data:\n',data1)x_train,x_test = train_test_split(data1,train_size=0.8,random_state=22)
print('x_train:\n',x_train)
print('x_test:\n',x_train)print(type(x_train),type(x_test))


![]()
鸢尾花数据集划分
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris = load_iris()
list = train_test_split(iris.data,iris.target,train_size=0.8,random_state=22)
x_train,x_test,y_train,y_test = list
print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)

现实世界数据集划分
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_20newsgroups
import numpy as np
news = fetch_20newsgroups(data_home='./src',subset='all')
list = train_test_split(news.data,news.target,train_size=0.8,random_state=22)
x_train,x_test,y_train,y_test = list
print(len(x_train), len(x_test), y_train.shape, y_test.shape)
![]()
相关文章:
机器学习(基础1)
数据集 sklearn玩具数据集 数据量小,数据在sklearn库的本地,只要安装了sklearn,不用上网就可以获取 sklearn现实世界数据集 数据量大,数据只能通过网络获取(为国外数据集,下载需要梯子) skle…...
我谈维纳(Wiener)复原滤波器
Rafael Gonzalez的《数字图像处理》中,图像复原这章内容几乎全错。上篇谈了图像去噪,这篇谈图像复原。 图像复原也称为盲解卷积,不处理点扩散函数(光学传递函数)的都不是图像复原。几何校正不属于图像复原,…...
怎么看真假国企啊?怎么识别假冒国企的千层套路?
一、怎么看真假国企啊? 1.使用具有迷惑性的名称:假冒国企往往在名称中使用“中国”、“中”、“国”等字样,或与知名国企名称相似的字号,以增加其可信度。 2.注册资本虚高:为了显示实力,假冒国企可能会在…...
C#中break和continue的区别?
在C#编程语言中,break和continue是两个用于控制循环流程的关键字,但它们的作用和用途有所不同。 break关键字 break关键字用于立即终止它所在的最内层循环或switch语句,并跳出该循环或switch块。程序执行将继续进行循环或switch语句之后的下一…...
Linux部署nginx访问文件403
问题描述:在linux服务器上通过nginx部署,访问文件403 新配置了一个用户来部署服务,将部署文件更新到原有目录下,结果nginx访问403 原因:没有配置文件的读写权限,默认不可读写,nginx无法访问到文…...
华为OD机试 - 数字排列 - 深度优先搜索dfs算法(Python/JS/C/C++ 2024 C卷 200分)
华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试真题(Python/JS/C/C)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,…...
Scrapy爬取heima论坛所有页面内容并保存到数据库中
前期准备: Scrapy入门_win10安装scrapy-CSDN博客 新建 Scrapy项目 scrapy startproject mySpider03 # 项目名为mySpider03 进入到spiders目录 cd mySpider03/mySpider03/spiders 创建爬虫 scrapy genspider heima bbs.itheima.com # 爬虫名为heima &#…...
Kafka参数了解
Kafka配置参数完整说明 1. 基础配置 参数名说明推荐值参考值broker.idbroker的唯一标识符每个节点唯一的整数1delete.topic.enable是否允许删除topictruetruelistenersbroker监听地址SASL_PLAINTEXT://host:9092SASL_PLAINTEXT://172.24.77.15:9092advertised.listeners对外发…...
sql专题 之 where和join on
文章目录 前言where介绍使用过滤结果集关联两个表 连接外连接内连接自然连接 使用inner join和直接使用where关联两个表的区别总结 前言 从数据库查询数据时,一张表不足以查询到我们想要的数据,更多的时候我们需要联表查询。 联表查询我们一般会使用连接…...
day12:版本控制器
版本控制 使用到的命令: ls -al查看当前目录下的文件及文件夹mkdir新建目录rm -rf递归强制删除文件夹 一、安装配置 1、下载地址 Git 2、初始配置 #用户名 git config --global user.name "自定义用户名" #邮箱(公司的联系方式--追责&…...
第四十一章 Vue之初识VueX
目录 一、引言 1.1. vuex的概念 1.2. vuex使用场景 1.3. 优势 二、创建演示项目 2.1. 构建项目步骤 2.2. 项目最终生成结构 2.3. 创建项目文件 2.3.1. App.vue 2.3.2. Son1.vue 2.3.3. Son2.vue 三、创建一个空仓库 3.1. 安装vuex 3.2. 新建仓库 3.3. 挂载仓库…...
GIT的基本使用与进阶
GIT的简单入门 一.什么是git? Git 是一个开源的分布式版本控制系统,用于跟踪文件更改、管理代码版本以及协作开发。它主要由 Linus Torvalds 于 2005 年创建,最初是为 Linux 内核开发而设计的。如今,Git 已经成为现代软件开发中…...
【Linux系统】—— 基本指令(二)
【Linux系统】—— 基本指令(二) 1 「alias」命令1.1 「ll」命令1.2 「alias」命令 2 「rmdir」指令与「rm」指令2.1 「rmdir」2.2 「rm」2.2.1 「rm」 删除普通文件2.2.2 「rm」 删除目录2.2.3 『 * 』 通配符 3 「man」 指令4 「cp」 指令4.1 拷贝普通…...
MFC工控项目实例三十实现一个简单的流程
启动按钮夹紧 密闭,时间0到平衡 进气,时间1到进气关,时间2到平衡关 检测,时间3到平衡 排气,时间4到夹紧开、密闭开、排气关。 相关代码 void CSEAL_PRESSUREDlg::OnTimer_2(UINT nIDEvent_2) {// if (nIDEvent_21 &am…...
【Android、IOS、Flutter、鸿蒙、ReactNative 】文本点击事件
Android Studio 版本 Android Java TextView 实现 点击事件 参考 import androidx.appcompat.app.AppCompatActivity; import android.os.Bundle; import android.util.Log; import android.view.View; import android.widget.TextView; import android.widget.Toast;public c…...
json转excel,读取json文件写入到excel中【rust语言】
一、rust代码 将json文件写入到 excel中。(保持json :key原始顺序) use indexmap::IndexMap; use serde::Deserialize; use serde_json::{Value, from_str}; use std::error::Error; use std::io::{self, Write}; use std::path::{Path}; u…...
Java面试要点06 - static关键字、静态属性与静态方法
本文目录 一、引言二、静态属性(Static Fields)三、静态方法(Static Methods)四、静态代码块(Static Blocks)五、静态内部类(Static Nested Classes)六、静态导入(Static…...
动态规划-背包问题——416.分割等和子集
1.题目解析 题目来源 416.分割等和子集——力扣 测试用例 2.算法原理 1.状态表示 这里背包问题基本上和母题的思路大相径庭,母题请见 [模板]01.背包 ,这里的状态表示与装满背包的情况类似,第二个下标就是当选择的物品体积直接等于j时是否可…...
Pr:视频过渡快速参考(合集 · 2025版)
Adobe Premiere Pro 自带七组约四十多个视频过渡 Video Transitions效果,包含不同风格和用途,可在两个剪辑之间创造平滑、自然的转场,用来丰富时间、地点或情绪的变化。恰当地应用过渡可让观众更好地理解故事或人物。 提示: 点击下…...
网络安全---安全见闻2
网络安全—安全见闻 拓宽视野不仅能够丰富我们的知识体系,也是自我提升和深造学习的重要途径!!! 设备漏洞问题 操作系统漏洞 渗透测试视角:硬件设备上的操作系统可能存在各种漏洞,攻击者可以利用这些漏洞…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
