当前位置: 首页 > news >正文

Redis三种集群模式:主从模式、哨兵模式和Cluster模式

目录标题

  • 1、背景及介绍
  • 2、 Redis 主从复制
    • 2.1、主从复制特点
    • 2.2、Redis主从复制原理
    • 2.3 PSYNC 工作原理
      • 2.3.1、启动或重连判断:
      • 2.3.2、第一次同步处理:
      • 2.3.3、断线重连处理:
      • 2.3.4、主节点响应
      • 2.3.5、全量同步触发条件:
      • 2.3.6、复制积压缓冲区的作用:
      • 2.3.7、数据一致性保障
    • 2.4、Redis 主从模式环境搭建
  • 3、Redis 哨兵机制
    • 3.1、概述
    • 3.2、Redis哨兵原理
    • 3.3、哨兵模式环境搭建
  • 4、Redis Cluster
    • 4.1、概述
    • 4.2、cluster原理
      • 4.2.1、Redis Cluster 节点分配与主从模式
        • 4.2.1.1、节点间的哈希槽分配
        • 4.2.1.2、数据的保存和获取
        • 4.2.1.3、新增或删除主节点
        • 4.2.2、Redis Cluster主从模式
    • 4.3、cluster架构

1、背景及介绍

Redis 支持三种不同的集群模式:主从模式、哨兵模式和Cluster模式,各具特色,应对不同的应用场景。

初始阶段,Redis 采用主从模式进行集群构建。在此模式中,主节点(master)负责数据写入,而从节点(slave)则用于数据读取和备份。若主节点发生故障,需人工介入,将某个从节点提升为新的主节点。但这种模式在故障恢复上效率较低,无法实现高度自动化。

为了提升系统的高可用性,Redis 推出了哨兵模式。在此模式下,通过一个哨兵集群来监控主从节点的健康状态。一旦主节点故障被侦测到,系统会自动选举出一个从节点,晋升为新的主节点,从而实现故障恢复的自动化,提高系统的稳定性和可靠性。

然而,哨兵模式仍然存在一定的局限性,例如内存容量和写入性能都受限于单个节点。为了克服这些限制,Redis 在 3.x 版本后推出了Cluster模式。这一模式通过数据分片(sharding)和多节点水平扩展,有效提高了内存利用率和写入性能,适用于更大规模和更高要求的数据处理场景。总体来说,Cluster模式为Redis集群的性能和扩展性提供了重要的支撑。

在这里插入图片描述

2、 Redis 主从复制

2.1、主从复制特点

Redis的主从复制架构通过定义主库(master)和从库(slave)的角色,实现了数据的高效同步和备份,具备以下几个显著特点:

  • 主库的读写能力:主库(master)是数据操作的中心。它处理所有的写请求,并且也能处理读请求。任何在主库上执行的数据修改操作,都会实时且自动地同步到所有从库(slave)。
  • 单向数据流:数据同步流程是单向的,即数据仅从主库流向从库。这种单向流动保证了数据同步的一致性和可靠性。
  • 从库的只读特性:从库通常被配置为只读模式,用于接收并存储从主库传来的数据。这种设计主要用于分担读取负载,从而提升整个系统的读取性能。
  • 主从关系的配置:一个主库可以对应多个从库,形成一对多的关系,有利于数据冗余备份和读取负载的分散。反之,一个从库仅对应一个主库,以维护数据同步的一致性。
  • 从库的容错能力:若某个从库故障,其对系统其他部分的影响极小。即使在从库宕机的情况下,其他从库仍可提供读服务,主库也能继续正常的读写操作。故障的从库在恢复后,能自动从主库同步缺失数据。
  • 主库故障的影响:主库故障可能导致Redis暂停处理新的写请求,但已连接的从库可继续提供读服务。主库恢复后,Redis将重新提供完整的读写服务。
  • 应对主库故障的机制:在当前主库故障时,系统不会自动在从库中选举新的主库。这需要借助额外的高可用性解决方案,例如Redis Sentinel或Redis Cluster,来管理主库的选举和故障转移。

Redis的主从复制架构有效地提供了高可用性、数据冗余以及读写分离的功能,确保了在保持高性能的同时,数据安全和一致性得到保障。

2.2、Redis主从复制原理

在本文档中,我们将重点介绍Redis版本2.8及其后续版本的主从复制机制。

无是哪种场景,Redis 的主从复制机制均采用异步复制,也称为乐观复制,因此不能完全保证主从数据的一致性。

不论在什么场景下,Redis的主从复制机制都采用了所谓的“异步复制”或“乐观复制”。这种复制方式意味着不能完全保证主库和从库数据的实时一致性。

Redis的主从复制机制可以根据不同的运行场景和条件采取不同的实现方式。以下是一些主要场景及其对应的复制实现和说明:

  • 第一次启动:在从库第一次连接到主库时,将采用psync复制方式进行全量复制。这意味着从库会从头开始复制主库中的全部数据。
  • 正常运行期间:在正常运行状态下,从库通过读取主库的缓冲区来进行增量复制。这个过程涉及复制主库上发生的新的数据变更。
  • 从库第二次启动(主库缓冲区未溢出) :当从库重新启动且主库的缓冲区未溢出时,将通过读取主库的缓冲区进行部分复制。这种方式能够快速同步中断期间发生的数据变更,而不会对主库造成重大影响。
  • Redis 2.8及以上版本的从库第二次启动(针对主库) :当从库第二次启动且系统版本为Redis 2.8或以上时,将采用psync复制进行全量复制。这种情况通常发生在主库的缓冲区数据无法满足从库需要同步的数据量时。

通过上述不同的复制策略,Redis能够在保证数据备份和减少系统负载的同时,灵活应对各种运行场景。尽管异步复制机制可能导致主从数据存在短暂的不一致,但这种设计在绝大多数应用场景中已被证明是既高效又可靠的。

PS:异步复制是Redis的复制方式,而psync是实现这种复制方式的具体命令。乐观复制或乐观并发控制则是另一种与Redis的异步复制机制不同的数据库事务处理概念。不少博客或说明介绍异步复制和乐观复制是同一个概念。

2.3 PSYNC 工作原理

在这里插入图片描述

PSYNC 命令是Redis中用于从节点与主节点之间数据同步的关键命令。它的工作原理包括以下几个步骤:

2.3.1、启动或重连判断:

当从节点(Slave)启动或者与主节点(Master)的连接断开后重连时,从节点需要确定是否曾经同步过。

如果从节点没有保存任何主节点的运行 ID(runnid),它将视为第一次连接道主节点。

2.3.2、第一次同步处理:

在第一次同步的情况下,从节点会发送 PSYNC -1 命令给主节点,请求进行全量数据同步。

全量同步是指主节点将其所有数据完整地复制一份给从节点。

2.3.3、断线重连处理:

对于之前已经同步过的从节点,它会发送 PSYNC runid offset 命令,其中runid是主节点的唯一标识符,offset是从节点上次同步数据的偏移量。

2.3.4、主节点响应

主节点接收到PSYNC命令后,会检查runid是否匹配,以及offset是否在复制积压缓冲区的范围内。

如果匹配且offset有效,主节点将回复CONTINUE,并发送自从节点上次断开连接以来的所有写命令。

2.3.5、全量同步触发条件:

如果runid不匹配,或offset超出了积压缓冲区的范围,主节点将通知从节点执行全量同步,回复FULLRESYNC runid offset。

2.3.6、复制积压缓冲区的作用:

  1. 主节点会在处理写命令的同时,将这些命令存入复制积压队列,同时记录队列中存放命令的全局offset。
  2. 当从节点断线重连,且条件允许时,它可以通过offset从积压队列中进行增量复制,而不是全量复制。

2.3.7、数据一致性保障

PSYNC机制允许从节点在网络不稳定或其他意外断开连接的情况下,能够以增量方式重新同步数据,保持主从节点数据的一致性。

2.4、Redis 主从模式环境搭建

在Redis的主从架构中,主节点的数据更新会自动被复制到从节点,确保数据的一致性。这种设置既是一种数据备份策略——从节点存储了主节点的数据备份,也提高了数据安全性。此外,通过主从架构实现读写分离,主节点负责处理写请求,而读请求可以分散到一个或多个从节点,这样既提高了系统的处理能力,又优化了资源的利用。
在这里插入图片描述

3、Redis 哨兵机制

3.1、概述

在本文档中,我们将重点介绍Redis版本2.8及其后续版本的哨兵机制。

哨兵模式是主从复制模式的一种进阶形式,继承了主从复制的所有优势,如数据一致性和读写分离。它的核心优点在于能够自动实现主从切换和故障转移,从而提升了系统的可用性和稳定性。在哨兵模式下,系统能够从手动切换转变为自动切换,极大地增强了系统的自动化程度和稳定性。然而,哨兵模式也存在一定的局限性,特别是在在线扩容方面。当集群容量接近或达到上限时,进行扩容操作相对较为复杂和困难。

注意事项:Redis 在 Windows 平台上不受官方支持,Redis 官方只提供了源码包(zip、tar.gz 格式)。

  • Redis 官网地址:redis.io/ Redis
  • 源码地址:github.com/redis/redis

3.2、Redis哨兵原理

自Redis 2.8版本起,官方引入了Sentinel(哨兵)架构,旨在提升系统的高可用性。哨兵模式主要通过后台监控机制来确保Redis服务的稳定性。在这一模式中,哨兵负责实时监控主节点的运行状况。一旦主节点出现故障,哨兵将基于预设的投票机制,自动将某个从节点晋升为新的主节点,以保持服务的连续性和数据的可用性。

**哨兵本身是一个独立的进程,运行在Redis本身进程之外。它通过周期性地向Redis节点发送命令,并等待节点的响应,来判断被监控的Redis实例是否正常运行。**通过这种方式,哨兵能够监控和管理一个或多个Redis实例,确保整个Redis服务的高可用性和稳定性。

在这里插入图片描述

3.3、哨兵模式环境搭建

在这里插入图片描述

4、Redis Cluster

4.1、概述

Redis Cluster,采用了去中心化的多主多从架构,以提高数据的可用性和伸缩性。这一架构使得Redis Cluster能够在保持高性能的同时,支持更大规模的数据存储和管理。以下是Redis Cluster的几个关键特点和优势的详细阐述:

  • 去中心化的多主多从架构:
    • 每个从节点都复制主节点的数据,但不直接参与读写操作,主要用于数据备份和故障恢复。
    • 这种架构使得每个节点都可以在需要时承担主节点的角色,从而提高了整体系统的可靠性和容错能力。
  • 数据处理与性能:
    • Redis Cluster在处理涉及多个键的操作时可能面临性能挑战,尤其是在数据量大和高并发的场景下。这是因为多key操作可能需要跨多个节点进行,从而增加了操作的复杂性。
      然而,对于单key操作,Redis Cluster能够保持其一贯的高性能,特别是在读操作上。
  • 动态扩容和收缩能力:
    • Redis Cluster支持动态地添加或移除节点,这意味着可以根据实际需求调整集群的规模,无需停机或中断服务。
    • 这一特性对于处理不断变化的负载和数据量非常重要,使得Redis Cluster在大型应用中更具弹性。
  • 节点间的通信与故障转移
    • 在Redis Cluster中,主节点之间会进行定期的健康检查和状态同步,确保数据的一致性
    • 当主节点出现故障时,其他主节点可以通过选举机制快速选出新的主节点,实现故障的自动转移,从而确保服务的连续性。

4.2、cluster原理

4.2.1、Redis Cluster 节点分配与主从模式

Redis Cluster 通过高效的节点分配和稳健的主从模式,确保了数据的高可用性和稳定性。以下是对其核心机制的详细解释:

4.2.1.1、节点间的哈希槽分配

Redis Cluster 使用哈希槽(hash slot)机制来分配数据。假设我们有三个主节点:A、B、C,它们可以部署在同一台机器的不同端口上,或分布在三台不同的服务器上。在这种设置下,16384个哈希槽将被如下分配:

  • 节点A负责管理0至5460号槽;
  • 节点B负责管理5461至10922号槽;
  • 节点C负责管理10923至16383号槽。

在 Redis Cluster 中,节点之间通过 gossip 协议进行通信,并通过选举机制实现故障转移。

Gossip 协议
Redis Cluster 使用 Gossip 协议来实现节点之间的通信。Gossip 协议是一种去中心化的通信协议,每个节点定期与其他节点交换信息,从而在整个集群中传播状态信息。

具体步骤如下:

  • 心跳消息:
    • 每个节点会定期向其他节点发送心跳消息(HELO 消息)。
    • 心跳消息包含发送节点的状态信息,如节点 ID、IP 地址、端口号、槽位分配情况等。
  • 信息传播:
    • 接收到心跳消息的节点会更新自己的状态表,并将这些信息进一步传播给其他节点。
    • 这种多对多的通信方式确保了信息在整个集群中的快速传播。
  • 节点发现:
    • 新加入集群的节点会通过初始配置或现有节点的推荐来发现其他节点。
    • 一旦发现其他节点,新节点会开始发送心跳消息,逐步融入集群。
  • 节点状态监控
    • 每个节点都会定期检查其他节点的状态。
    • 如果一个节点在一段时间内没有收到某个节点的心跳消息,它会标记该节点为疑似故障(PFAIL)。
  • 集群共识
    • 当多个节点标记某个节点为 PFAIL 时,其中一个节点会发起一次投票,询问其他节点是否也认为该节点故障。
    • 如果大多数节点同意,则该节点被标记为已知故障(FAIL)。
4.2.1.2、数据的保存和获取
  • 存入数据:例如,存储一个键值对,键名为“key”,其哈希值按照 CRC16(‘key’) % 16384 = 6782 计算。根据这个哈希槽号,数据将被存储在节点B上。
  • 获取数据:无论连接哪个节点(A、B、C),获取键名为“key”的数据时,都会根据同样的哈希算法路由到节点B上提取数据。

CRC16(‘key’) % 16384 是 Redis Cluster 中用于确定键(key)所属槽位的计算公式。CRC16(Cyclic Redundancy Check 16)是一种常用的校验算法,用于检测数据传输中的错误。在 Redis Cluster 中,CRC16 用于生成一个 16 位的哈希值,这个哈希值可以唯一标识一个键。计算 CRC16(‘key’) 会得到一个 16 位的整数。

通过这个公式,可以将键均匀地分布到 16384 个槽位中。每个槽位最终会被分配给集群中的某个主节点。

4.2.1.3、新增或删除主节点

新增节点:假设新增一个节点D,Redis Cluster 会将部分哈希槽从其他节点迁移至D节点。这可能导致哈希槽分布如下调整:

  • 节点A:1365-5460
  • 节点B:6827-10922
  • 节点C:12288-16383
  • 节点D:0-1364,5461-6826,10923-12287

为了平衡负载,需要将一些哈希槽从现有节点(A、B、C)迁移到新节点 D。

删除节点:删除节点时,其管理的哈希槽会被迁移到其他节点上。迁移完成后,该节点即可被安全移除。

4.2.2、Redis Cluster主从模式
  • 主从的重要性:为了保障数据的高可用性,Redis Cluster 引入了主从模式。在这种模式下,每个主节点都有一个或多个从节点。主节点处理所有的读写操作,而从节点主要负责数据备份。如果主节点发生故障,从节点中的一个将被提升为新的主节点,以确保集群的稳定运行。
  • 未设置从节点的风险:以ABC三个主节点的集群为例,如果这些主节点都没有配置从节点,当其中一个(如B)发生故障时,整个集群的可用性将受到影响。A和C节点的哈希槽也将无法访问。

实例说明

在建立集群时,为每个主节点配置从节点是非常重要的。例如,集群包含主节点A、B、C,及其对应的从节点A1、B1、C1。这样,即使B节点出现故障,B1节点可以被提升为新的主节点,保证集群的持续运行。当B节点恢复时,它将成为B1的从节点。然而,需要注意的是,如果B节点和其对应的从节点B1同时出现故障,Redis Cluster 将无法提供服务。

4.3、cluster架构

在这里插入图片描述

相关文章:

Redis三种集群模式:主从模式、哨兵模式和Cluster模式

目录标题 1、背景及介绍2、 Redis 主从复制2.1、主从复制特点2.2、Redis主从复制原理2.3 PSYNC 工作原理2.3.1、启动或重连判断:2.3.2、第一次同步处理:2.3.3、断线重连处理:2.3.4、主节点响应2.3.5、全量同步触发条件:2.3.6、复制…...

CDH大数据平台部署

二、CDH简介 全称Cloudera’s Distribution Including Apache Hadoop。 hadoop的版本 (Apache、CDH、Hotonworks版本) 在公司中一般使用cdh多一些(收费的)、也有公司使用阿里云大数据平台、微软的大数据平台。 国内也有一些平台:星环大数…...

7.4、实验四:RIPv2 认证和触发式更新

源文件 一、引言:为什么要认证和采用触发式更新? 1. RIP v2 认证 RIP(Routing Information Protocol)版本 2 添加了认证功能,以提高网络的安全性。认证的作用主要包括以下几点: 防止路由欺骗 RIP v1 是不…...

【一步步开发AI运动小程序】二十一、如果将AI运动项目配置持久化到后端?

**说明:**本文所涉及的AI运动识别、计时、计数能力,都是基于云智「Ai运动识别引擎」实现。云智「Ai运动识别」插件识别引擎,可以为您的小程序或Uni APP赋于原生、本地、广覆盖、高性能的人体识别、姿态识别、10余种常见的运动计时、计数识别及…...

LED和QLED的区别

文章目录 1. 基础背光技术2. 量子点技术的引入3. 色彩表现4. 亮度和对比度5. 能效6. 寿命7. 价格总结 LED和 QLED都是基于液晶显示(LCD)技术的电视类型,但它们在显示技术、色彩表现和亮度方面有一些关键区别。以下是两者的详细区别&#xff…...

2024 年Postman 如何安装汉化中文版?

2024 年 Postman 的汉化中文版安装教程...

转化古老的Eclipse项目为使用gradle构建

很多古老的Java项目,是使用Eclipse作为IDE开发的。 那么,使用其它IDE的开发者,如何快速地进入这种古老项目的开发呢?或者说,一个Eclipse构建的古老项目,能不能转化成一个IDE无关的项目,进而所有…...

openGauss常见问题与故障处理(二)

2.网络故障定位手段 2.1 网络故障定位手段--常见网络故障引发的异常 在数据库正常工作的情况下,网络层对上层用户是透明的,但数据库在长期运行时,可能会由于各种原因导致出现网络异常或错误。 常见的因网络故障引发的异常有: 1>…...

Mysql 8迁移到达梦DM8遇到的报错

在实战迁移时,遇到两个报错。 一、列[tag]长度超出定义 在mysql中,tag字段的长度是varchar(20),在迁移到DM8后,这个长度不够用了。怎么解决? 在迁移过程中,“指定对象”时,选择转换。 在“列映…...

Android HandlerThread 基础

HandlerThread **一、HandlerThread的基本概念和用途**1. **目的**2. **与普通线程的区别** **二、HandlerThread的使用步骤**1. **创建HandlerThread对象并启动线程**2. **创建Handler并关联到HandlerThread的消息队列**3. **发送消息到HandlerThread的消息队列** **三、Handl…...

【智能算法应用】人工水母搜索算法求解二维路径规划问题

摘要 本文基于人工水母搜索算法(Jellyfish Search Algorithm, JSA),对二维路径规划问题进行了研究。JSA作为一种新兴的群体智能优化算法,模仿了水母在海洋中觅食和迁移的行为,以求解非线性、复杂的优化问题。实验结果…...

【Altium】原理图如何利用参数管理器批量修改元器件属性

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 解决在使用AD设计原理图的时候,使用参数管理器批量修改元器件的属性。 2、 问题场景 客户在使用ad时,想大批量修改元器件的属性,类似于Cadence中,批量修改Manufactur…...

基于Spring Boot与Redis的令牌主动失效机制实现

目录 前言1. 项目结构和依赖配置1.1 项目依赖配置1.2 Redis连接配置 2. 令牌主动失效机制的实现流程2.1 登录成功后将令牌存储到Redis中2.2 使用拦截器验证令牌2.3 用户修改密码后删除旧令牌 3. Redis的配置与测试4. 可能的扩展与优化结语 前言 在现代Web系统中,用…...

深度学习之循环神经网络(RNN)

1 为什么需要RNN? ​ 时间序列数据是指在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。一般的神经网络,在训练数据足够、算法模型优越的情况下,给定特定的x,就能得到期望y。其一…...

Autosar CP Network Management模块规范导读

Network Management模块的主要功能 网络管理适配:作为通信管理器和总线特定网络管理模块之间的适配层,实现不同总线网络管理功能的统一接口,确保系统中各种网络的协同工作。协调功能 网络协调关闭:使用协调算法协调多个网络的关闭,确保它们在合适的时间同步进入睡眠模式,…...

Xshell 7 偏好设置

1 Xshell7 工具——更改用户数据文件夹 就是此电脑目录下的文档 该目录下的7 Xshell下的 applog ColorScheme Files 配色方案文件目录 HighlightSet Files 突出显示集目录 Logs 日志 QuickButton Files 快速命令集 Scripts 脚本文件 Sessions 会话文件 会话文件目录就…...

云计算答案

情境一习题练习 一、选择题 1、在虚拟机VMware软件中实现联网过程,图中箭头所指的网络连接方式与下列哪个相关( C )。 A.仅主机模式 B.桥接 C.NAT D.嫁接 2、请问下图这个虚拟化架构属于什么类型( A …...

浅谈现货白银与白银td的价格差异

西方资本主义世界崇尚自由经济,而我国实行社会主义市场经济,因此二者在金融系统上存在不少差异,反映在贵金属市场中,可能直接表现为价格上的差异。如果投资者对此能有基本的了解,日后面对交易中的特殊价格波动&#xf…...

【QT常用技术讲解】任务栏图标+socket网络服务+开机自启动

前言 首先看网络编程的定义:两个不同主机设备之间的进程通信。C/S(Client-Server)是早期非常典型的软件架构,C/S架构虽然简单,但却非常适用于桌面图形化的QT项目。 本篇的QT项目是从真实的项目中简化出来,满足很多相似的场景&…...

【计算机基础——数据结构——AVL平衡二叉树】

1. BST二叉查找树 1.1 BST二叉查找树的特性 左子树上所有结点的值均小于或等于它的根结点的值。右子树上所有结点的值均大于或等于它的根结点的值。左、右子树也分别为二叉排序树。 1.2 BST二叉查找树的缺点 二叉查找树是有缺点的,在不断插入的时候,…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...