当前位置: 首页 > news >正文

用 Python 从零开始创建神经网络(一):编码我们的第一个神经元

编码我们的第一个神经元

  • 引言
  • 1. A Single Neuron:
    • Example 1
    • Example 2
  • 2. A Layer of Neurons:
    • Example 1

引言

本教程专为那些对神经网络已有基础了解、但尚未动手实践过的读者而设计。尽管网上充斥着各种教程,但很多内容要么过于简略,要么直接进入高级主题,让初学者难以跟上。本指南将带领你从零开始,用 Python 构建一个简单的神经网络模型,逐步拆解每一步,帮助你真正理解神经网络的工作原理,为今后的深入学习打下坚实基础。

1. A Single Neuron:

最简单基础的单个神经元:

Example 1

inputs = [1, 2, 3]
weights = [0.2, 0.8, -0.5]
bias = 2
output = (inputs[0]*weights[0] + inputs[1]*weights[1] + inputs[2]*weights[2] + bias)
print("output:", output)
>>>
output: 2.3

在这里插入图片描述
代码的可视化:https://nnfs.io/bkr/

Example 2

inputs = [1.0, 2.0, 3.0, 2.5]
weights = [0.2, 0.8, -0.5, 1.0]
bias = 2.0
output = (inputs[0]*weights[0] +inputs[1]*weights[1] +inputs[2]*weights[2] +inputs[3]*weights[3] + bias)
print(output)
>>>
output: 2.3
output: 4.8

在这里插入图片描述
代码的可视化:https://nnfs.io/djp/

2. A Layer of Neurons:

一层神经元:


Example 1

假设我们有这样一个场景:一层有 3 个神经元,4 个输入。

inputs = [1, 2, 3, 2.5]weights1 = [0.2, 0.8, -0.5, 1]
weights2 = [0.5, -0.91, 0.26, -0.5]
weights3 = [-0.26, -0.27, 0.17, 0.87]bias1 = 2
bias2 = 3
bias3 = 0.5outputs = [# Neuron 1:inputs[0]*weights1[0] +inputs[1]*weights1[1] +inputs[2]*weights1[2] +inputs[3]*weights1[3] + bias1,# Neuron 2:inputs[0]*weights2[0] +inputs[1]*weights2[1] +inputs[2]*weights2[2] +inputs[3]*weights2[3] + bias2,# Neuron 3:inputs[0]*weights3[0] +inputs[1]*weights3[1] +inputs[2]*weights3[2] +inputs[3]*weights3[3] + bias3]print("outputs:", outputs)
>>>
outputs: [4.8, 1.21, 2.385]

在这里插入图片描述

代码的可视化:https://nnfs.io/mxo/

在这段代码中,我们有三组权重和三个偏差,它们定义了三个神经元。每个神经元都“连接”到相同的输入。不同之处在于每个神经元对输入应用的权重和偏差是分开的。这称为全连接神经网络——当前层的每个神经元都与前一层的每个神经元相连。这是一种非常常见的神经网络类型,但应该注意,并非一定要像这样完全连接。到目前为止,我们只展示了一个包含很少神经元的单层的代码。想象一下编码更多层和更多神经元,这将变得非常具有挑战性。相对于使用我们当前的方法,我们可以使用循环来扩展并动态处理输入和层的大小。我们已将分开的权重变量转换为一个权重列表,这样我们可以遍历它们,并且我们改变了代码使用循环而不是硬编码的操作。

inputs = [1, 2, 3, 2.5]
weights = [[0.2, 0.8, -0.5, 1],[0.5, -0.91, 0.26, -0.5],[-0.26, -0.27, 0.17, 0.87]]
biases = [2, 3, 0.5]# Output of current layer
layer_outputs = []
# For each neuron
for neuron_weights, neuron_bias in zip(weights, biases):# Zeroed output of given neuronneuron_output = 0# For each input and weight to the neuronfor n_input, weight in zip(inputs, neuron_weights):# Multiply this input by associated weight# and add to the neuron’s output variableneuron_output = neuron_output + n_input*weight# Add biasneuron_output = neuron_output + n_input*weight# Put neuron’s result to the layer’s output listlayer_outputs.append(neuron_output)print("layer_outputs:", layer_outputs)print(list(zip(weights, biases)))
print(list(zip(weights, biases))[0])
print(type(list(zip(weights, biases))[0]))
>>>
layer_outputs: [4.8, 1.21, 2.385][([0.2, 0.8, -0.5, 1], 2), ([0.5, -0.91, 0.26, -0.5], 3), ([-0.26, -0.27, 0.17, 0.87], 0.5)]
([0.2, 0.8, -0.5, 1], 2)
<class 'tuple'>

这做的和之前一样,只是以一种更动态和可扩展的方式。如果你在某个步骤感到困惑,可以打印print()出对象来看看它们是什么以及发生了什么。zip()函数让我们能够同时迭代多个可迭代对象(在这种情况下是列表)。再次说明,我们所做的就是,对每个神经元(上述代码中的外层循环,遍历神经元的权重和偏差),取每个输入值与该输入相关联的权重相乘(上述代码中的内层循环,遍历输入和权重),将所有这些相加,然后在最后加上一个偏差。最后,将神经元的输出发送到层的输出列表中。

相关文章:

用 Python 从零开始创建神经网络(一):编码我们的第一个神经元

编码我们的第一个神经元 引言1. A Single Neuron&#xff1a;Example 1Example 2 2. A Layer of Neurons&#xff1a;Example 1 引言 本教程专为那些对神经网络已有基础了解、但尚未动手实践过的读者而设计。尽管网上充斥着各种教程&#xff0c;但很多内容要么过于简略&#x…...

低代码开发

低代码&#xff08;Low Code&#xff09;是一种软件开发方法&#xff0c;它通过可视化界面和少量的编码来快速构建应用程序。低代码平台的核心理念是通过抽象和最小化手工编码的方式&#xff0c;加速软件开发和部署的过程。 定义 低代码是一种软件开发方法&#xff0c;它允许…...

sql server 文件和文件组介绍

sql server 文件和文件组介绍 数据库文件和文件组 - SQL Server | Microsoft Learn...

caozha-CEPCS(新冠肺炎疫情防控系统)

caozha-CEPCS&#xff0c;是一个基于PHP开发的新冠肺炎疫情防控系统&#xff0c;CEPCS&#xff08;全称&#xff1a;COVID-19 Epidemic Prevention and Control System&#xff09;&#xff0c;可以应用于单位、企业、学校、工业园区、村落等等。小小系统&#xff0c;希望能为大…...

1Panel修改PostgreSQL时区

需求 1Panel安装的PostgreSQL默认是UTC时区&#xff0c;需要将它修改为上海时间 步骤 进入PostgreSQL的安装目录 /opt/1panel/apps/postgresql/postgresql/data打开postgresql.conf文件 修改&#xff1a; log_timezone Asia/Shanghai timezone Asia/Shanghai保存后重启…...

开发一个CRM系统难吗?CRM系统的实现步骤

越来越多企业意识到了&#xff0c;客户关系管理&#xff08;CRM&#xff09;系统已成为企业提升客户体验、推动销售增长的必备工具。一个高效的CRM系统不仅能够帮助企业优化客户数据管理&#xff0c;还能提升客户满意度&#xff0c;增强客户忠诚度&#xff0c;从而推动业务的持…...

kafka常见面试题总结

Kafka 核心知识解析 一、Kafka 消息发送流程 Kafka 发送消息涉及两个线程&#xff1a;main 线程和 sender 线程。在 main 线程中&#xff0c;会创建一个双端队列 RecordAccumulator&#xff0c;main 线程负责将消息发送给 RecordAccumulator&#xff0c;而 sender 线程则从 R…...

前端知识点---Javascript中检测数据类型函数总结

文章目录 01 typeof 运算符02 instanceof 运算符03 Array.isArray()04 Object.prototype.toString.call()05 constructor 属性06 isNaN() 和 Number.isNaN() (常用)07 isFinite() 和 Number.isFinite()08 typeof null 是 "object" 的问题 01 typeof 运算符 返回值是…...

aspose如何获取PPT放映页“切换”的“持续时间”值

aspose如何获取PPT放映页“切换”的“持续时间”值 项目场景问题描述问题1&#xff1a;从官方文档和资料查阅发现并没有对切换的持续时间进行处理的方法问题2&#xff1a;aspose的依赖包中&#xff0c;所有的关键对象都进行了混淆处理 解决方案1、找到ppt切换的持续时间对应的混…...

【MQTT】代理服务比较RabbitMQ、Mosquitto 和 EMQX

前言 目前要处理大量设备同时频繁发送数据的情况&#xff0c;MQTT协议确实是一个更优的选择&#xff0c;因为它特别适合需要低带宽和高效能的物联网应用&#xff0c;下面是对目前主流协议的对比 数据截止日期&#xff1a;2024年11月10日 基础设施 后端&#xff1a; springclo…...

【C#/C++】C++/CL中String^的含义和举例,C++层需要调用C#层对象时...

示例&#xff1a; String^ IDataServer::GetParam(String^ aParamName){ /// }在 C/CLI 中&#xff0c;String^ 和 IDataServer::GetParam(String^ aParamName) 这种写法是一种混合了 C 和 .NET 的语法&#xff0c;用于在 C 中操作 .NET 对象。C/CLI 是微软扩展的 C 语言&…...

Python学习从0到1 day26 第三阶段 Spark ② 数据计算Ⅰ

人总是会执着于失去的&#xff0c;而又不珍惜现在所拥有的 —— 24.11.9 一、map方法 PySpark的数据计算&#xff0c;都是基于RDD对象来进行的&#xff0c;采用依赖进行&#xff0c;RDD对象内置丰富的成员方法&#xff08;算子&#xff09; map算子 功能&#xff1a;map算子…...

【详细】如何优雅地删除 Docker 容器与镜像

内容预览 ≧∀≦ゞ 镜像与容器的区别删除容器和镜像的具体步骤1. 删除容器步骤 1&#xff1a;查看当前运行的容器步骤 2&#xff1a;停止容器步骤 3&#xff1a;删除容器 2. 删除镜像步骤 1&#xff1a;查看镜像列表步骤 2&#xff1a;删除镜像 3. 删除所有容器和镜像 使用 1Pa…...

Spring Spring Boot 常用注解总结

在 Java 开发中&#xff0c;Spring 和 Spring Boot 框架广泛应用于企业级应用开发。这两个框架提供了丰富的注解&#xff0c;使得开发更加高效和便捷。本文将对 Spring 和 Spring Boot 中常用的注解进行总结。 一、Spring 常用注解 1. Component 作用&#xff1a;用于将普通的…...

Flink独立集群+Flink整合yarn

Flink独立集群的搭建&#xff1a; 1、上传解压配置环境变量 # 1、解压 tar -xvf flink-1.15.4-bin-scala_2.12.tgz # 2、修改环境变量 export FLINK_HOME/usr/local/soft/flink-1.15.4 export PATH$PATH:$FLINK_HOME/bin 2、修改配置文件 cd /usr/local/soft/flink-1.15.4/…...

动态规划 之 简单多状态 dp 问题 算法专题

一. 按摩师 按摩师 状态表示 根据经验 题目要求 dp[i] 表示: 选择到i位置时, 此时的最长预约时长 但是根据题目又分成两种情况: f[i] : 选择到 i 位置的时候, nums[i] 必选, 此时的最长预约时长 g[i] : 选择到 i 位置的时候, nums[i] 不选, 此时的最长预约时长状态转移方程 …...

qt QPixmapCache详解

1、概述 QPixmapCache是Qt框架中提供的一个功能强大的图像缓存管理工具类。它允许开发者在全局范围内缓存QPixmap对象&#xff0c;从而有效减少图像的重复加载&#xff0c;提高图像加载和显示的效率。这对于需要频繁加载和显示图像的用户界面应用来说尤为重要&#xff0c;能够…...

Redis中的持久化

什么是 Redis 持久化&#xff1f; Redis 是一个内存数据库&#xff0c;也就是说它主要把数据存储在内存中&#xff0c;这样可以实现非常高的读写速度。通常&#xff0c;内存数据库是非常快速且高效的&#xff0c;但它也有一个很大的问题&#xff1a;数据丢失的风险。因为当 Red…...

Unity 如何优雅的限定文本长度, 包含对特殊字符,汉字,数字的处理。实际的案例包括 用户昵称

常规限定文本长度 ( 通过 UntiyEngine.UI.Inputfiled 附带的长度限定 ) 痛点1 无法对中文&#xff0c;数字&#xff0c;英文进行识别&#xff0c;同样数量的汉字和同样数量的英文像素长度是不一样的&#xff0c;当我们限定固定长度后&#xff0c;在界面上的排版不够美观 痛点2…...

SMO+PLL滑膜观测器、MARS模型参考自适应观测器simulink仿真

模型内容介绍&#xff1a; &#xff08;1&#xff09;SMOPLL滑膜观测器通过SMO估计电机的转速和位置信息&#xff0c;并利用PLL技术对这些信息进行跟踪和校正&#xff0c;以实现高精度的电机控制&#xff1b; &#xff08;2&#xff09;MARS是一种基于模型参考自适应控制理论…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

EasyRTC音视频实时通话功能在WebRTC与智能硬件整合中的应用与优势

一、WebRTC与智能硬件整合趋势​ 随着物联网和实时通信需求的爆发式增长&#xff0c;WebRTC作为开源实时通信技术&#xff0c;为浏览器与移动应用提供免插件的音视频通信能力&#xff0c;在智能硬件领域的融合应用已成必然趋势。智能硬件不再局限于单一功能&#xff0c;对实时…...

Docker、Wsl 打包迁移环境

电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本&#xff1a; 2.2.4.0 内核版本&#xff1a; 5.15.153.1-2 WSLg 版本&#xff1a; 1.0.61 MSRDC 版本&#xff1a; 1.2.5326 Direct3D 版本&#xff1a; 1.611.1-81528511 DXCore 版本&#xff1a; 10.0.2609…...