当前位置: 首页 > news >正文

工程师 - 如何访问Github

Github无法访问,涉及到IP地址、Host文件、DNS等配置。

1,查找github地址

打开https://www.ipaddress.com/网站,这个网站首页是查询自己IP的。

在上方搜索栏输入github.com,查找github的地址。

https://www.ipaddress.com/website/github.com/

比如找到的地址:140.82.113.4

2,Windows下使用管理员权限打开C:\Windows\System32\drivers\etc\hosts文件。

在最后面添加一行:

140.82.113.4 github.com

关闭并保存。

3,添加完之后,使用CMD终端执行命令,刷新DNS。

ipconfig /flushdns

并使用ping命令检查是否已经更新了地址。

> ping github.com

正在 Ping github.com [140.82.113.4] 具有 32 字节的数据:

来自 140.82.113.4 的回复: 字节=32 时间=204ms TTL=45

来自 140.82.113.4 的回复: 字节=32 时间=204ms TTL=45

打开浏览器,访问github.com。

其他注意事项:

1,浏览器缓存和Cookie清除一下。

2,关闭或设置daili服务器。

3,关闭防火墙或修改防火墙设置。

4,DNS解析问题,重新设置DNS服务器地址。

5,更换浏览器,或者禁用浏览器扩展。

6,等待一段时间再访问,并查看GitHub状态页面。

7,查看网络状态,是否网络连接有问题或受限。

相关文章:

工程师 - 如何访问Github

Github无法访问,涉及到IP地址、Host文件、DNS等配置。 1,查找github地址 打开https://www.ipaddress.com/网站,这个网站首页是查询自己IP的。 在上方搜索栏输入github.com,查找github的地址。 https://www.ipaddress.com/websit…...

222. 完全二叉树的节点个数 迭代

222. 完全二叉树的节点个数 已解答 简单 相关标签 相关企业 给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。 完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值&#xff0…...

中心极限定理的三种形式

独立同分布的中心极限定理: 设 X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1​,X2​,…,Xn​是独立同分布的随机变量序列,且 E ( X i ) μ E(X_i) \mu E(Xi​)μ, D ( X i ) σ 2 > 0 D(X_i) \sigma^2 > 0 D(Xi​)σ2>0存在…...

React Native 全栈开发实战班 - 导航栈定制

在 React Native 应用中,导航栈管理是实现页面跳转和状态维护的核心机制。React Navigation 提供了强大的导航栈管理功能,允许开发者灵活地控制页面堆栈、传递参数、处理返回逻辑等。本章节将深入探讨导航栈的管理与定制,包括如何控制导航栈、…...

扬州BGP高防服务器可以给企业带来哪些好处?

扬州BGP服务器是目前江苏较为出名的高防机房,随着网络安全逐渐被企业所重视,扬州机房的也被大家进行选择,但是扬州BGP高防服务器除了可以帮助企业抵御网络攻击,还有着其他的帮助,下面就让我们来了解一下吧!…...

题目讲解15 合并两个排序的链表

原题链接: 合并两个排序的链表_牛客题霸_牛客网 思路分析: 第一步:写一个链表尾插数据的方法。 typedef struct ListNode ListNode;//申请结点 ListNode* BuyNode(int x) {ListNode* node (ListNode*)malloc(sizeof(ListNode));node->…...

leetcode92:反转链表||

给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&#xff1a;[1,4,3,2…...

arkUI:遍历数据数组动态渲染(forEach)

arkUI&#xff1a;遍历数据数组动态渲染&#xff08;forEach&#xff09; 1 主要内容说明2 相关内容2.1 ForEach 的基本语法2.2 简单遍历数组2.2 多维数组遍历2.4 使用唯一键2.5 源码1的相关说明2.5.1 源码1 &#xff08;遍历数据数组动态渲染&#xff09;2.5.2 源码1运行效果 …...

js中import引入一个export值可以被修改。vue,react

import引入的数据实际就是数据本身。 如果导出的是一个对象&#xff0c;该对象引入后被更改了&#xff0c;则会影响其他文件引入此对象 解释示例&#xff1a; // resources.js const obj {} export {obj} 当在a.js中import引入一个空对象obj&#xff0c;并且新增一个属性ob…...

PDF24:多功能 PDF 工具使用指南

PDF24&#xff1a;多功能 PDF 工具使用指南 在日常工作和学习中&#xff0c;PDF 是一种常见且重要的文档格式。无论是查看、编辑、合并&#xff0c;还是转换 PDF 文件&#xff0c;能够快速高效地处理 PDF 文档对于提高工作效率至关重要。PDF24 是一款免费、功能全面的 PDF 工具…...

域名解析线路类型有哪几种

在网络世界中&#xff0c;域名解析是将域名转换为IP地址的关键环节&#xff0c;而域名解析线路类型的不同则为域名解析提供了多样化的策略&#xff0c;以满足不同用户和网络环境的需求。以下是几种常见的域名解析线路类型。 电信线路 电信线路解析主要是针对中国电信网络用户…...

Spring资源加载模块,原来XML就这,活该被注解踩在脚下 手写Spring第六篇了

这一篇让我想起来学习 Spring 的时&#xff0c;被 XML 支配的恐惧。明明是写Java&#xff0c;为啥要搞个XML呢&#xff1f;大佬们永远不知道&#xff0c;我认为最难的是 XML 头&#xff0c;但凡 Spring 用 JSON来做配置文件&#xff0c;Java 界都有可能再诞生一个扛把子。 <…...

[运维][Nginx]Nginx学习(2/5)-Nginx高级

Nginx服务器基础配置实例 前面我们已经对Nginx服务器默认配置文件的结构和涉及的基本指令做了详细的阐述。通过这些指令的合理配置&#xff0c;我们就可以让一台Nginx服务器正常工作&#xff0c;并且提供基本的web服务器功能。 接下来我们将通过一个比较完整和最简单的基础配…...

【快捷入门笔记】mysql基本操作大全-SQL数据库

SQL数据库 一、创建数据库 – 创建一个新数据库 fang_fang CREATE DATABASE fang_fang;– 显示所有数据库以确认创建 SHOW DATABASES;– 使用新数据库fang_fang USE fang_fang;– 检查我们正在使用哪个数据库 SELECT DATABASE();二、 删除数据库 –当你确定数据库存在并…...

【LeetCode】【算法】15. 三数之和

LeetCode 15. 三数之和 题目描述 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不…...

传输协议设计与牧村摆动(Makimoto‘s Wave)

有一条活鱼和一条死鱼&#xff0c;你准备怎么做&#xff0c;你会将活鱼红烧或将死鱼清蒸吗&#xff1f;好的食材只需要最简单的烹饪&#xff0c;不好的食材才需要花活儿。 我此前的文字几乎都在阐述一个观点&#xff0c;广域网就是那条死鱼&#xff0c;数据中心则是那条活鱼。…...

JMeter进阶篇

目录 上篇导航&#xff1a; 总目录&#xff1a; 一、逻辑控制器&#xff1a; 1.逻辑控制器和关联&#xff1a; 2.if逻辑控制器&#xff1a; 3.forEach控制器&#xff1a; 4.循环控制器&#xff1a; 二、关联&#xff1a; 1.xpath&#xff1a; 2.正则表达式提取器&…...

LabVIEW编程基础教学(一)--介绍

LabVIEW&#xff08;Laboratory Virtual Instrument Engineering Workbench&#xff09;是一种基于图形化编程的开发环境&#xff0c;专为工程应用、测试、测量、控制系统等设计。与传统的文本编程语言不同&#xff0c;LabVIEW 使用图形化的方式通过“数据流”模型来表示程序逻…...

HVV蓝队基础

免责声明 学习视频来自B 站up主泷羽sec&#xff0c;如涉及侵权马上删除文章。 笔记的只是方便各位师傅学习知识&#xff0c;以下代码、网站只涉及学习内容&#xff0c;其他的都与本人无关&#xff0c;切莫逾越法律红线&#xff0c;否则后果自负。 企业网络架构 企业技术和信…...

[运维][Nginx]Nginx学习(1/5)--Nginx基础

Nginx简介 背景介绍 Nginx一个具有高性能的【HTTP】和【反向代理】的【WEB服务器】&#xff0c;同时也是一个【POP3/SMTP/IMAP代理服务器】&#xff0c;是由伊戈尔赛索耶夫(俄罗斯人)使用C语言编写的&#xff0c;Nginx的第一个版本是2004年10月4号发布的0.1.0版本。另外值得一…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

ZYNQ学习记录FPGA(一)ZYNQ简介

一、知识准备 1.一些术语,缩写和概念&#xff1a; 1&#xff09;ZYNQ全称&#xff1a;ZYNQ7000 All Pgrammable SoC 2&#xff09;SoC:system on chips(片上系统)&#xff0c;对比集成电路的SoB&#xff08;system on board&#xff09; 3&#xff09;ARM&#xff1a;处理器…...