当前位置: 首页 > news >正文

文献解读-DNAscope: High accuracy small variant calling using machine learning

关键词:基准与方法研究;基因测序;变异检测;


文献简介

  • 标题(英文):DNAscope: High accuracy small variant calling using machine learning
  • 标题(中文):DNAscope:使用
    的机器学习高精度小变异调用
  • 发表期刊:bioRxiv
  • 作者单位:Sentieon公司
  • 发表年份:2022
  • 文章地址:https://doi.org/10.1101/2022.05.20.492556

图1 文献简介

图1 文献简介

当前的小变异检测技术,尤其是GATK的HaplotypeCaller,在大多数情况下表现优秀。然而,在复杂基因组区域的检测准确性仍有提升空间。随着测序技术在临床应用中的普及,提高这些区域的检测准确性变得越来越重要。传统方法主要依赖专家构建的模型和手动调整的过滤器,而机器学习方法显示出通过学习更复杂的变异特征关系来提高检测准确性的潜力。


测序流程

DNAscope作为GATK HaplotypeCaller的进阶版本,巧妙地融合了成熟的基于单倍型的变异检测方法和先进的机器学习技术,以提升变异检测的准确性。它在保留原有逻辑架构的同时,优化了活跃区域检测和局部组装过程,特别增强了在复杂基因组区域的表现。DNAscope通过为候选变异添加额外信息注释,并结合机器学习模型进行变异基因型分析,显著提高了整体准确度。此外,DNAscope还可与贝叶斯基因型分析模型配合使用,使其在非哺乳动物物种的重测序分析中同样发挥优势,体现了其广泛的适用性和卓越的性能。

图2  DNAscope方法概述

图2 DNAscope方法概述

为了评估 DNAscope 在不同个体中的变异调用准确性,研究者使用 Sentieon 的 DNAscope 和 DNAseq(符合 GATK 种系最佳实践)管道,使用来自三个 GIAB 样本的公开数据来调用变异:HG002、HG003 和 HG004。

测试涵盖了不同测序深度(15x至36x),并以NIST GIAB高置信度调用v4.2.1为基准。结果显示,DNAscope在所有样本和测序深度下的SNP和INDEL检测性能均优于DNAseq,特别是在30x HG002样本中,SNP和INDEL的F1分数分别达到99.57%和99.46%,总体错误率降低了一半以上。这种在多个样本中的卓越表现证明了DNAscope模型的泛化能力,而非过拟合于训练样本。此外,DNAscope还展现了适应新测序技术的潜力,如之前研究中开发的MGI模型所示,进一步凸显了其在变异检测领域的先进性和灵活性。

图3  DNAscope 和 DNAseq 的精确召回曲线

图3 DNAscope 和 DNAseq 的精确召回曲线

图4  对整个 GA4GH 分层区域进行评估,HG002 深度为 30×

图4 对整个 GA4GH 分层区域进行评估,HG002 深度为 30×

为深入评估变异检测工具的性能,研究组利用GA4GH的分层区域进行了详细分析。这些区域包括低可映射性、分段重复、自链区域、MHC以及综合多种复杂因素的"全难度"区域。结果显示,DNAscope在读数映射困难的区域,如低可映射性、分段重复和自链区域,均明显优于DNAseq。特别是在MHC区域的SNP检测和长同聚物区域的INDEL检测中,DNAscope表现更为出色。这些优势共同导致DNAscope在复杂基因组区域的整体表现优于DNAseq。值得注意的是,即使在相对简单的区域,DNAscope在INDEL检测方面仍保持领先,而在SNP检测方面与DNAseq旗鼓相当。这一全面的分层分析凸显了DNAscope在处理各种复杂基因组区域时的强大能力和灵活性。

研究团队通过对HG002、HG003和HG004的36x测序数据进行抽样,创建了5个不同深度的数据集,以评估变异检测工具在不同测序覆盖度下的性能。结果显示,尽管变异检测准确性通常随覆盖度降低而下降,但DNAscope在低覆盖度条件下仍然保持了优于DNAseq的高准确性。特别值得注意的是,DNAscope在20x覆盖度下的表现始终优于DNAseq在36x覆盖度下的表现。这一发现突显了DNAscope改进的架构和机器学习模型过滤在低覆盖度条件下的显著优势,为高效且经济的变异检测提供了新的可能性。

图5 对瓶中基因组样本 HG002、HG003、HG004 进行多深度测序评估

图5 对瓶中基因组样本 HG002、HG003、HG004 进行多深度测序评估

研究探讨了DNAscope贝叶斯模型在非人类和多倍体样本上的表现,特别关注15x覆盖度下的性能。结果显示,尽管整体准确性低于其机器学习模型,DNAscope的贝叶斯模型在INDEL检测方面仍优于DNAseq,而在SNP检测方面两者相当。这表明DNAscope在处理非标准样本时仍具有一定优势,尤其是在INDEL检测方面。

图6 对Genome in a Bottle样本HG002、HG003和HG004在15x测序深度下的评估

图6 对Genome in a Bottle样本HG002、HG003和HG004在15x测序深度下的评估

在标准化的AWS环境中,对DNAscope进行了性能测试。结果显示,使用96+vCPU处理30x全基因组测序样本时,DNAscope的运行时间不到1小时,与DNAseq相当,比BWA/GATK快5倍。测试还表明DNAscope具有良好的可扩展性,运行时间与线程数几乎呈线性关系。

图7 DNAscope 在多个 AWS C6i 实例上的运行时

图7 DNAscope 在多个 AWS C6i 实例上的运行时


总结

在这项研究中,研究组证明了DNAscope在不同样本和不同覆盖度水平下都能达到比DNAseq更高的准确性。使用GA4GH分层区域进行的分层分析,能够确认DNAscope在大多数分层区域中都具有高准确性,并突显了DNAscope在插入缺失(indels)和包含变异检测较困难的基因组区域的分层中具有更高的准确性。DNAscope结合了GATK's HaplotypeCaller中使用的成熟数学和统计模型,以及用于变异基因型分析的机器学习方法,在保持计算效率的同时实现了卓越的准确性。

相关文章:

文献解读-DNAscope: High accuracy small variant calling using machine learning

关键词:基准与方法研究;基因测序;变异检测; 文献简介 标题(英文):DNAscope: High accuracy small variant calling using machine learning标题(中文):DNAsc…...

成都睿明智科技有限公司解锁抖音电商新玩法

在这个短视频风起云涌的时代,抖音电商以其独特的魅力迅速崛起,成为众多商家争夺的流量高地。而在这片充满机遇与挑战的蓝海中,成都睿明智科技有限公司犹如一颗璀璨的新星,以其专业的抖音电商服务,助力无数品牌实现从零…...

【操作系统】——调度算法

🌹😊🌹博客主页:【Hello_shuoCSDN博客】 ✨操作系统详见 【操作系统专项】 ✨C语言知识详见:【C语言专项】 目录 先来先服务(FCFS, First Come First Serve) 短作业优先(SJF, Shortest Job Fi…...

MySQL LOAD DATA INFILE导入数据报错

1.导入命令 LOAD DATA INFILE "merge.csv" INTO TABLE 报名数据 FIELDS TERMINATED BY , ENCLOSED BY " LINES TERMINATED BY \n IGNORE 1 LINES; 2.表结构 CREATE TABLE IF NOT EXISTS 报名数据 ( pid VARCHAR(100) NOT NULL, 查询日期 VARCHAR(25) NO…...

AI 写作(五)核心技术之文本摘要:分类与应用(5/10)

一、文本摘要:AI 写作的关键技术 文本摘要在 AI 写作中扮演着至关重要的角色。在当今信息爆炸的时代,人们每天都被大量的文本信息所包围,如何快速有效地获取关键信息成为了一个迫切的需求。文本摘要技术正是为了解决这个问题而诞生的&#x…...

CTFL(二)贯穿软件开发生存周期中的测试

贯穿软件开发生存周期中的测试 验收测试(acceptance testing),黑盒测试(black-box testing),组件集成测试(component integration testing),组件测试(compone…...

PMIC FS8405

FS8495 具有多个SMPS和LDO的故障安全系统基础芯片。   FS8X 大多数参数都是通过OTP寄存器设置的。 概述 FS85/FS84设备系列是按照ASIL D流程开发的,FS84具有ASIL B能力,而FS85具有ASIL D能力。所有的设备选项都是引脚到引脚和软件兼容的。   FS85/FS84是一种汽车功能安全…...

matlab建模入门指导

本文以水池中鸡蛋温度随时间的变化为切入点,对其进行数学建模并进行MATLAB求解,以更为通俗地进行数学建模问题入门指导。 一、问题简述 一个煮熟的鸡蛋有98摄氏度,将它放在18摄氏度的水池中,五分钟后鸡蛋的温度为38摄氏度&#x…...

微搭低代码入门03函数

目录 1 函数的定义与调用2 参数与返回值3 默认参数4 将功能拆分成小函数5 函数表达式6 箭头函数7 低代码中的函数总结 在用低代码开发软件的时候,除了我们上两节介绍的变量、条件语句外,还有一个重要的概念叫函数。函数是执行特定功能的代码片段&#xf…...

零基础Java第十六期:抽象类接口(二)

目录 一、接口(补) 1.1. 数组对象排序 1.2. 克隆接口 1.3. 浅拷贝和深拷贝 1.4. 抽象类和接口的区别 一、接口(补) 1.1. 数组对象排序 我们在讲一维数组的时候,使用到冒泡排序来对数组里的元素进行从小到大或从大…...

【css】html里面的图片宽度设为百分比,高度要与宽度一样

场景&#xff1a;展示图片列表的时候&#xff0c;原始图片宽高不一致。 外层div的宽度自适应&#xff0c;图片宽度不能固定数值&#xff0c;只能设置百分比。图片高度也不能设置固定数值。 如何让图片的高度与图片的宽度一样呢&#xff1f; html代码 &#xff1a; <div cl…...

前端三大组件之CSS,三大选择器,游戏网页仿写

回顾 full stack全栈 Web前端三大组件 结构(html) 样式(css) 动作/交互(js) --- 》 框架vue&#xff0c;安哥拉 div 常用的标签 扩展标签 列表 ul/ol order——有序号 unordered——没序号的黑点 <!DOCTYPE html> <html><head><meta charset"…...

sqlsever 分布式存储查询

当数据存储在不同的服务器上的时候怎么取出来进行正常管连呢?比如你有 A 和B 两个服务器 里面存有两个表 分别是 A_TABLE、B_TABLE 其中 他们的关联关系是 ID 互相关联 1.创建链接服务器如果在B数据库要访问A数据库 那么 就在B数据库创建 -- 创建链接服务器 EXEC sp_addlink…...

deeponet(nature原文部分重点提取)

论文链接&#xff1a;Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators | Nature Machine Intelligence 原文部分重点提取 DeepONets 会产生小的泛化误差 隐式类型算子还可以描述我们对其形式没有任何数学知识的系统 De…...

LeetCode【0036】有效的数独

本文目录 1 中文题目2 求解方法&#xff1a;python内置函数set2.1 方法思路2.2 Python代码2.3 复杂度分析 3 题目总结 1 中文题目 请根据以下规则判断一个 9 x 9 的数独是否有效。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线…...

Typecho登陆与评论添加Geetest极验证,支持PJAX主题(如Handsome)

Typecho登陆与评论添加Geetest极验证&#xff0c;支持PJAX主题&#xff08;如Handsome&#xff09; 起因 最近垃圾评论比较多&#xff0c;为了防止一些机器人&#xff0c;我给博客添加了一些评论过滤机制&#xff0c;并为评论添加了验证码。 原本使用的插件是noisky/typecho…...

前端入门一之ES6--面向对象、够着函数和原型、继承、ES5新增方法、函数进阶、严格模式、高阶函数、闭包

前言 JS是前端三件套之一&#xff0c;也是核心&#xff0c;本人将会更新JS基础、JS对象、DOM、BOM、ES6等知识点&#xff0c;这篇是ES6;这篇文章是本人大一学习前端的笔记&#xff1b;欢迎点赞 收藏 关注&#xff0c;本人将会持续更新。 文章目录 JS高级 ES61、面向对象1.1…...

脑机接口、嵌入式 AI 、工业级 MR、空间视频和下一代 XR 浏览器丨RTE2024 空间计算和新硬件专场回顾

这一轮硬件创新由 AI 引爆&#xff0c;或许最大受益者仍是 AI&#xff0c;因为只有硬件才能为 AI 直接获取最真实世界的数据。 在人工智能与硬件融合的新时代&#xff0c;实时互动技术正迎来前所未有的创新浪潮。从嵌入式系统到混合现实&#xff0c;从空间视频到脑机接口&…...

RoseTTAFold MSA_emb类解读

MSA_emb 类的作用是对多序列对齐(MSA)数据进行嵌入编码,同时添加位置编码和查询编码(调用PositionalEncoding 和 QueryEncoding)以便为序列特征建模类。 源代码: class MSA_emb(nn.Module):def __init__(self, d_model=64, d_msa=21, p_drop=0.1, max_len=5000):super(…...

2411C++,C++26反射示例

参考 namespace __impl {template<auto... vals>struct replicator_type {template<typename F>constexpr void operator>>(F body) const {(body.template operator()<vals>(), ...);}};template<auto... vals>replicator_type<vals...>…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...