当前位置: 首页 > news >正文

文献解读-DNAscope: High accuracy small variant calling using machine learning

关键词:基准与方法研究;基因测序;变异检测;


文献简介

  • 标题(英文):DNAscope: High accuracy small variant calling using machine learning
  • 标题(中文):DNAscope:使用
    的机器学习高精度小变异调用
  • 发表期刊:bioRxiv
  • 作者单位:Sentieon公司
  • 发表年份:2022
  • 文章地址:https://doi.org/10.1101/2022.05.20.492556

图1 文献简介

图1 文献简介

当前的小变异检测技术,尤其是GATK的HaplotypeCaller,在大多数情况下表现优秀。然而,在复杂基因组区域的检测准确性仍有提升空间。随着测序技术在临床应用中的普及,提高这些区域的检测准确性变得越来越重要。传统方法主要依赖专家构建的模型和手动调整的过滤器,而机器学习方法显示出通过学习更复杂的变异特征关系来提高检测准确性的潜力。


测序流程

DNAscope作为GATK HaplotypeCaller的进阶版本,巧妙地融合了成熟的基于单倍型的变异检测方法和先进的机器学习技术,以提升变异检测的准确性。它在保留原有逻辑架构的同时,优化了活跃区域检测和局部组装过程,特别增强了在复杂基因组区域的表现。DNAscope通过为候选变异添加额外信息注释,并结合机器学习模型进行变异基因型分析,显著提高了整体准确度。此外,DNAscope还可与贝叶斯基因型分析模型配合使用,使其在非哺乳动物物种的重测序分析中同样发挥优势,体现了其广泛的适用性和卓越的性能。

图2  DNAscope方法概述

图2 DNAscope方法概述

为了评估 DNAscope 在不同个体中的变异调用准确性,研究者使用 Sentieon 的 DNAscope 和 DNAseq(符合 GATK 种系最佳实践)管道,使用来自三个 GIAB 样本的公开数据来调用变异:HG002、HG003 和 HG004。

测试涵盖了不同测序深度(15x至36x),并以NIST GIAB高置信度调用v4.2.1为基准。结果显示,DNAscope在所有样本和测序深度下的SNP和INDEL检测性能均优于DNAseq,特别是在30x HG002样本中,SNP和INDEL的F1分数分别达到99.57%和99.46%,总体错误率降低了一半以上。这种在多个样本中的卓越表现证明了DNAscope模型的泛化能力,而非过拟合于训练样本。此外,DNAscope还展现了适应新测序技术的潜力,如之前研究中开发的MGI模型所示,进一步凸显了其在变异检测领域的先进性和灵活性。

图3  DNAscope 和 DNAseq 的精确召回曲线

图3 DNAscope 和 DNAseq 的精确召回曲线

图4  对整个 GA4GH 分层区域进行评估,HG002 深度为 30×

图4 对整个 GA4GH 分层区域进行评估,HG002 深度为 30×

为深入评估变异检测工具的性能,研究组利用GA4GH的分层区域进行了详细分析。这些区域包括低可映射性、分段重复、自链区域、MHC以及综合多种复杂因素的"全难度"区域。结果显示,DNAscope在读数映射困难的区域,如低可映射性、分段重复和自链区域,均明显优于DNAseq。特别是在MHC区域的SNP检测和长同聚物区域的INDEL检测中,DNAscope表现更为出色。这些优势共同导致DNAscope在复杂基因组区域的整体表现优于DNAseq。值得注意的是,即使在相对简单的区域,DNAscope在INDEL检测方面仍保持领先,而在SNP检测方面与DNAseq旗鼓相当。这一全面的分层分析凸显了DNAscope在处理各种复杂基因组区域时的强大能力和灵活性。

研究团队通过对HG002、HG003和HG004的36x测序数据进行抽样,创建了5个不同深度的数据集,以评估变异检测工具在不同测序覆盖度下的性能。结果显示,尽管变异检测准确性通常随覆盖度降低而下降,但DNAscope在低覆盖度条件下仍然保持了优于DNAseq的高准确性。特别值得注意的是,DNAscope在20x覆盖度下的表现始终优于DNAseq在36x覆盖度下的表现。这一发现突显了DNAscope改进的架构和机器学习模型过滤在低覆盖度条件下的显著优势,为高效且经济的变异检测提供了新的可能性。

图5 对瓶中基因组样本 HG002、HG003、HG004 进行多深度测序评估

图5 对瓶中基因组样本 HG002、HG003、HG004 进行多深度测序评估

研究探讨了DNAscope贝叶斯模型在非人类和多倍体样本上的表现,特别关注15x覆盖度下的性能。结果显示,尽管整体准确性低于其机器学习模型,DNAscope的贝叶斯模型在INDEL检测方面仍优于DNAseq,而在SNP检测方面两者相当。这表明DNAscope在处理非标准样本时仍具有一定优势,尤其是在INDEL检测方面。

图6 对Genome in a Bottle样本HG002、HG003和HG004在15x测序深度下的评估

图6 对Genome in a Bottle样本HG002、HG003和HG004在15x测序深度下的评估

在标准化的AWS环境中,对DNAscope进行了性能测试。结果显示,使用96+vCPU处理30x全基因组测序样本时,DNAscope的运行时间不到1小时,与DNAseq相当,比BWA/GATK快5倍。测试还表明DNAscope具有良好的可扩展性,运行时间与线程数几乎呈线性关系。

图7 DNAscope 在多个 AWS C6i 实例上的运行时

图7 DNAscope 在多个 AWS C6i 实例上的运行时


总结

在这项研究中,研究组证明了DNAscope在不同样本和不同覆盖度水平下都能达到比DNAseq更高的准确性。使用GA4GH分层区域进行的分层分析,能够确认DNAscope在大多数分层区域中都具有高准确性,并突显了DNAscope在插入缺失(indels)和包含变异检测较困难的基因组区域的分层中具有更高的准确性。DNAscope结合了GATK's HaplotypeCaller中使用的成熟数学和统计模型,以及用于变异基因型分析的机器学习方法,在保持计算效率的同时实现了卓越的准确性。

相关文章:

文献解读-DNAscope: High accuracy small variant calling using machine learning

关键词:基准与方法研究;基因测序;变异检测; 文献简介 标题(英文):DNAscope: High accuracy small variant calling using machine learning标题(中文):DNAsc…...

成都睿明智科技有限公司解锁抖音电商新玩法

在这个短视频风起云涌的时代,抖音电商以其独特的魅力迅速崛起,成为众多商家争夺的流量高地。而在这片充满机遇与挑战的蓝海中,成都睿明智科技有限公司犹如一颗璀璨的新星,以其专业的抖音电商服务,助力无数品牌实现从零…...

【操作系统】——调度算法

🌹😊🌹博客主页:【Hello_shuoCSDN博客】 ✨操作系统详见 【操作系统专项】 ✨C语言知识详见:【C语言专项】 目录 先来先服务(FCFS, First Come First Serve) 短作业优先(SJF, Shortest Job Fi…...

MySQL LOAD DATA INFILE导入数据报错

1.导入命令 LOAD DATA INFILE "merge.csv" INTO TABLE 报名数据 FIELDS TERMINATED BY , ENCLOSED BY " LINES TERMINATED BY \n IGNORE 1 LINES; 2.表结构 CREATE TABLE IF NOT EXISTS 报名数据 ( pid VARCHAR(100) NOT NULL, 查询日期 VARCHAR(25) NO…...

AI 写作(五)核心技术之文本摘要:分类与应用(5/10)

一、文本摘要:AI 写作的关键技术 文本摘要在 AI 写作中扮演着至关重要的角色。在当今信息爆炸的时代,人们每天都被大量的文本信息所包围,如何快速有效地获取关键信息成为了一个迫切的需求。文本摘要技术正是为了解决这个问题而诞生的&#x…...

CTFL(二)贯穿软件开发生存周期中的测试

贯穿软件开发生存周期中的测试 验收测试(acceptance testing),黑盒测试(black-box testing),组件集成测试(component integration testing),组件测试(compone…...

PMIC FS8405

FS8495 具有多个SMPS和LDO的故障安全系统基础芯片。   FS8X 大多数参数都是通过OTP寄存器设置的。 概述 FS85/FS84设备系列是按照ASIL D流程开发的,FS84具有ASIL B能力,而FS85具有ASIL D能力。所有的设备选项都是引脚到引脚和软件兼容的。   FS85/FS84是一种汽车功能安全…...

matlab建模入门指导

本文以水池中鸡蛋温度随时间的变化为切入点,对其进行数学建模并进行MATLAB求解,以更为通俗地进行数学建模问题入门指导。 一、问题简述 一个煮熟的鸡蛋有98摄氏度,将它放在18摄氏度的水池中,五分钟后鸡蛋的温度为38摄氏度&#x…...

微搭低代码入门03函数

目录 1 函数的定义与调用2 参数与返回值3 默认参数4 将功能拆分成小函数5 函数表达式6 箭头函数7 低代码中的函数总结 在用低代码开发软件的时候,除了我们上两节介绍的变量、条件语句外,还有一个重要的概念叫函数。函数是执行特定功能的代码片段&#xf…...

零基础Java第十六期:抽象类接口(二)

目录 一、接口(补) 1.1. 数组对象排序 1.2. 克隆接口 1.3. 浅拷贝和深拷贝 1.4. 抽象类和接口的区别 一、接口(补) 1.1. 数组对象排序 我们在讲一维数组的时候,使用到冒泡排序来对数组里的元素进行从小到大或从大…...

【css】html里面的图片宽度设为百分比,高度要与宽度一样

场景&#xff1a;展示图片列表的时候&#xff0c;原始图片宽高不一致。 外层div的宽度自适应&#xff0c;图片宽度不能固定数值&#xff0c;只能设置百分比。图片高度也不能设置固定数值。 如何让图片的高度与图片的宽度一样呢&#xff1f; html代码 &#xff1a; <div cl…...

前端三大组件之CSS,三大选择器,游戏网页仿写

回顾 full stack全栈 Web前端三大组件 结构(html) 样式(css) 动作/交互(js) --- 》 框架vue&#xff0c;安哥拉 div 常用的标签 扩展标签 列表 ul/ol order——有序号 unordered——没序号的黑点 <!DOCTYPE html> <html><head><meta charset"…...

sqlsever 分布式存储查询

当数据存储在不同的服务器上的时候怎么取出来进行正常管连呢?比如你有 A 和B 两个服务器 里面存有两个表 分别是 A_TABLE、B_TABLE 其中 他们的关联关系是 ID 互相关联 1.创建链接服务器如果在B数据库要访问A数据库 那么 就在B数据库创建 -- 创建链接服务器 EXEC sp_addlink…...

deeponet(nature原文部分重点提取)

论文链接&#xff1a;Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators | Nature Machine Intelligence 原文部分重点提取 DeepONets 会产生小的泛化误差 隐式类型算子还可以描述我们对其形式没有任何数学知识的系统 De…...

LeetCode【0036】有效的数独

本文目录 1 中文题目2 求解方法&#xff1a;python内置函数set2.1 方法思路2.2 Python代码2.3 复杂度分析 3 题目总结 1 中文题目 请根据以下规则判断一个 9 x 9 的数独是否有效。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线…...

Typecho登陆与评论添加Geetest极验证,支持PJAX主题(如Handsome)

Typecho登陆与评论添加Geetest极验证&#xff0c;支持PJAX主题&#xff08;如Handsome&#xff09; 起因 最近垃圾评论比较多&#xff0c;为了防止一些机器人&#xff0c;我给博客添加了一些评论过滤机制&#xff0c;并为评论添加了验证码。 原本使用的插件是noisky/typecho…...

前端入门一之ES6--面向对象、够着函数和原型、继承、ES5新增方法、函数进阶、严格模式、高阶函数、闭包

前言 JS是前端三件套之一&#xff0c;也是核心&#xff0c;本人将会更新JS基础、JS对象、DOM、BOM、ES6等知识点&#xff0c;这篇是ES6;这篇文章是本人大一学习前端的笔记&#xff1b;欢迎点赞 收藏 关注&#xff0c;本人将会持续更新。 文章目录 JS高级 ES61、面向对象1.1…...

脑机接口、嵌入式 AI 、工业级 MR、空间视频和下一代 XR 浏览器丨RTE2024 空间计算和新硬件专场回顾

这一轮硬件创新由 AI 引爆&#xff0c;或许最大受益者仍是 AI&#xff0c;因为只有硬件才能为 AI 直接获取最真实世界的数据。 在人工智能与硬件融合的新时代&#xff0c;实时互动技术正迎来前所未有的创新浪潮。从嵌入式系统到混合现实&#xff0c;从空间视频到脑机接口&…...

RoseTTAFold MSA_emb类解读

MSA_emb 类的作用是对多序列对齐(MSA)数据进行嵌入编码,同时添加位置编码和查询编码(调用PositionalEncoding 和 QueryEncoding)以便为序列特征建模类。 源代码: class MSA_emb(nn.Module):def __init__(self, d_model=64, d_msa=21, p_drop=0.1, max_len=5000):super(…...

2411C++,C++26反射示例

参考 namespace __impl {template<auto... vals>struct replicator_type {template<typename F>constexpr void operator>>(F body) const {(body.template operator()<vals>(), ...);}};template<auto... vals>replicator_type<vals...>…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...