当前位置: 首页 > news >正文

LeetCode 3242.设计相邻元素求和服务:哈希表

【LetMeFly】3242.设计相邻元素求和服务:哈希表

力扣题目链接:https://leetcode.cn/problems/design-neighbor-sum-service/

给你一个 n x n 的二维数组 grid,它包含范围 [0, n2 - 1] 内的不重复元素。

实现 neighborSum 类:

  • neighborSum(int [][]grid) 初始化对象。
  • int adjacentSum(int value) 返回在 grid 中与 value 相邻的元素之,相邻指的是与 value 在上、左、右或下的元素。
  • int diagonalSum(int value) 返回在 grid 中与 value 对角线相邻的元素之,对角线相邻指的是与 value 在左上、右上、左下或右下的元素。

 

示例 1:

输入:

["neighborSum", "adjacentSum", "adjacentSum", "diagonalSum", "diagonalSum"]

[[[[0, 1, 2], [3, 4, 5], [6, 7, 8]]], [1], [4], [4], [8]]

输出: [null, 6, 16, 16, 4]

解释:

  • 1 的相邻元素是 0、2 和 4。
  • 4 的相邻元素是 1、3、5 和 7。
  • 4 的对角线相邻元素是 0、2、6 和 8。
  • 8 的对角线相邻元素是 4。

示例 2:

输入:

["neighborSum", "adjacentSum", "diagonalSum"]

[[[[1, 2, 0, 3], [4, 7, 15, 6], [8, 9, 10, 11], [12, 13, 14, 5]]], [15], [9]]

输出: [null, 23, 45]

解释:

  • 15 的相邻元素是 0、10、7 和 6。
  • 9 的对角线相邻元素是 4、12、14 和 15。

 

提示:

  • 3 <= n == grid.length == grid[0].length <= 10
  • 0 <= grid[i][j] <= n2 - 1
  • 所有 grid[i][j] 值均不重复。
  • adjacentSumdiagonalSum 中的 value 均在范围 [0, n2 - 1] 内。
  • 最多会调用 adjacentSumdiagonalSum 总共 2 * n2 次。

解题方法:哈希表

使用哈希表记录每个值的adjacentSum和diagonalSum,查询操作的时候直接去哈希表里查询就可以了。

  • 时间复杂度:初始化 O ( n 2 ) O(n^2) O(n2)单次查询 O ( 1 ) O(1) O(1)
  • 空间复杂度:初始化 O ( n 2 ) O(n^2) O(n2)单次查询 O ( 1 ) O(1) O(1)

AC代码

C++
const int adj[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
const int dia[4][2] = {{-1, -1}, {-1, 1}, {1, -1}, {1, 1}};class NeighborSum {
private:vector<pair<int, int>> cache;
public:NeighborSum(vector<vector<int>>& grid) {int n = grid.size();cache.resize(n * n);for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {int cntAdj = 0, cntDia = 0;for (int k = 0; k < 4; k++) {int x = i + adj[k][0], y = j + adj[k][1];if (x >= 0 && x < n && y >= 0 && y < n) {cntAdj += grid[x][y];}x = i + dia[k][0], y = j + dia[k][1];if (x >= 0 && x < n && y >= 0 && y < n) {cntDia += grid[x][y];}}cache[grid[i][j]] = {cntAdj, cntDia};}}}int adjacentSum(int value) {return cache[value].first;}int diagonalSum(int value) {return cache[value].second;}
};
Python
from typing import Listdirection = [[-1, 0], [1, 0], [0, -1], [0, 1], [-1, -1], [1, 1], [-1, 1], [1, -1]]class NeighborSum:def __init__(self, grid: List[List[int]]):n = len(grid)self.cache = [[0, 0] for _ in range(n * n)]for i in range(n):for j in range(n):for th, (x, y) in enumerate(direction):if 0 <= x + i < n and 0 <= y + j < n:self.cache[grid[i][j]][th // 4] += grid[x + i][y + j]def adjacentSum(self, value: int) -> int:return self.cache[value][0]def diagonalSum(self, value: int) -> int:return self.cache[value][1]
Java
class NeighborSum {private static final int[][] direction = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};private int[][] cache;public NeighborSum(int[][] grid) {int n = grid.length;cache = new int[n * n][2];for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {for (int k = 0; k < 8; k++) {int x = i + direction[k][0], y = j + direction[k][1];if (x >= 0 && x < n && y >= 0 && y < n) {cache[grid[i][j]][k / 4] += grid[x][y];}}}}}public int adjacentSum(int value) {return cache[value][0];}public int diagonalSum(int value) {return cache[value][1];}
}
Go
package mainvar direction = []struct{x, y int}{{-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}}
type Value [][2]inttype NeighborSum struct {cache Value
}func Constructor(grid [][]int) NeighborSum {n := len(grid)var neighborSum NeighborSumneighborSum.cache = make(Value, n * n)for i, row := range grid {for j, v := range row {for k, d := range direction {x, y := i + d.x, j + d.yif x >= 0 && x < n && y >= 0 && y < n {neighborSum.cache[v][k / 4] += grid[x][y]}}}}return neighborSum
}func (this *NeighborSum) AdjacentSum(value int) int {return this.cache[value][0]
}func (this *NeighborSum) DiagonalSum(value int) int {return this.cache[value][1]
}

同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~

Tisfy:https://letmefly.blog.csdn.net/article/details/143698347

相关文章:

LeetCode 3242.设计相邻元素求和服务:哈希表

【LetMeFly】3242.设计相邻元素求和服务&#xff1a;哈希表 力扣题目链接&#xff1a;https://leetcode.cn/problems/design-neighbor-sum-service/ 给你一个 n x n 的二维数组 grid&#xff0c;它包含范围 [0, n2 - 1] 内的不重复元素。 实现 neighborSum 类&#xff1a; …...

【AliCloud】ack + ack-secret-manager + kms 敏感数据安全存储

介绍 ack-secret-manager支持以Kubernetes Secret实例的形式向集群导入或同步KMS凭据信息&#xff0c;确保您集群内的应用能够安全地访问敏感信息。通过该组件&#xff0c;您可以实现密钥数据的自动更新&#xff0c;使应用负载通过文件系统挂载指定Secret实例来使用凭据信息&a…...

探索JavaScript的强大功能:从基础到高级应用

随着互联网技术的不断发展&#xff0c;JavaScript已经成为现代Web开发的基石。无论是简单的交互效果&#xff0c;还是复杂的前端框架&#xff0c;JavaScript都在其中扮演着不可或缺的角色。本文旨在对JavaScript进行深入探讨&#xff0c;从其基础概念到高级应用&#xff0c;并讨…...

新增支持Elasticsearch数据源,支持自定义在线地图风格,DataEase开源BI工具v2.10.2 LTS发布

2024年11月11日&#xff0c;人人可用的开源BI工具DataEase正式发布v2.10.2 LTS版本。 这一版本的功能变动包括&#xff1a;数据源方面&#xff0c;新增了对Elasticsearch数据源的支持&#xff1b;图表方面&#xff0c;对地图类和表格类图表进行了功能增强和优化&#xff0c;增…...

Spark的容错机制

1&#xff0c;Spark如何保障数据的安全 1、RDD容错机制&#xff1a;persist持久化机制 1&#xff09;cache算子 - 功能&#xff1a;将RDD缓存在内存中 - 语法&#xff1a;cache() - 本质&#xff1a;底层调用的还是persist&#xff08;StorageLevel.MEMORY_ONLY&#xff09;&…...

YOLOv8改进 | 利用YOLOv8进行视频划定区域目标统计计数

简介 本项目旨在利用YOLOv8算法来实现视频中划定区域目标的统计计数。YOLOv8是一种目标检测算法,能够实现实时目标检测和定位。视频划定区域目标统计计数是指在一个视频中,对于指定的区域,统计出该区域内出现的目标物体数量。 该项目的工作流程如下:首先,利用YOLOv8算法…...

基于yolov8、yolov5的番茄成熟度检测识别系统(含UI界面、训练好的模型、Python代码、数据集)

摘要&#xff1a;番茄成熟度检测在农业生产及质量控制中起着至关重要的作用&#xff0c;不仅能帮助农民及时采摘成熟的番茄&#xff0c;还为自动化农业监测提供了可靠的数据支撑。本文介绍了一款基于YOLOv8、YOLOv5等深度学习框架的番茄成熟度检测模型&#xff0c;该模型使用了…...

wafw00f源码详细解析

声明 本人菜鸟一枚&#xff0c;为了完成作业&#xff0c;发现网上所有的关于wafw00f的源码解析都是这抄那那抄这的&#xff0c;没有新东西&#xff0c;所以这里给出一个详细的源码解析&#xff0c;可能有错误&#xff0c;如果有大佬发现错误&#xff0c;可以在评论区平和的指出…...

什么是crm?3000字详细解析

在现代商业环境中&#xff0c;客户关系管理&#xff08;CRM&#xff09;已经成为企业驱动成功的关键工具。在复杂且竞争激烈的市场中&#xff0c;如何有效地管理客户关系、提升客户满意度&#xff0c;并增加客户忠诚度&#xff0c;越来越成为企业迫切关心的问题。而CRM系统&…...

WEB3.0介绍

Web3.0是对Web2.0的改进&#xff0c;被视为互联网潜在的下一阶段。 以下是对Web3.0的详细介绍&#xff1a; 一、定义与概念 Web3.0被描述为一个运行在区块链技术之上的去中心化互联网。它旨在构建一个更加自主、智能和开放的互联网环境&#xff0c;其中用户不必 在不同中心化…...

【深度学习】LSTM、BiLSTM详解

文章目录 1. LSTM简介&#xff1a;2. LSTM结构图&#xff1a;3. 单层LSTM详解4. 双层LSTM详解5. BiLSTM6. Pytorch实现LSTM示例7. nn.LSTM参数详解 1. LSTM简介&#xff1a; LSTM是一种循环神经网络&#xff0c;它可以处理和预测时间序列中间隔和延迟相对较长的重要事件。LSTM通…...

分子对接--软件安装

分子对接相关软件安装 一、软件 AutoDock&#xff0c;下载链接: linkMGLtools&#xff0c;下载链接: link 自行选择合适版本下载&#xff0c;这里主要叙述在win上的具体安装流程&#xff1a; 下载得到&#xff1a; 二、运行 运行autodocksuite-4.2.6.i86Windows得到&#…...

【Python无敌】在 QGIS 中使用 Python

QGIS 中有 Python 的运行环境,可以很好地执行各种任务。 这里的问题是如何在 Jupyter 中调用 QGIS 的功能。 首先可以肯定的是涉及到 GUI 的一些任务是无法在 Jupyter 中访问的, 这样可以用的功能主要是地处理工具。 按如下方式进行了尝试。 原想使用 gdal:hillshade ,但是…...

全面解读:低代码开发平台的必备要素——系统策划篇

在传统开发过程中&#xff0c;系统策划起着举足轻重的作用&#xff0c;它宛如一位幕后的总指挥&#xff0c;把控着整个软件开发项目的走向。而随着技术的不断进步&#xff0c;低代码开发平台逐渐崭露头角&#xff0c;它以快速开发、降低技术门槛等优势吸引了众多企业和开发者的…...

Vue开发自动生成验证码功能 前端实现不使用第三方插件实现随机验证码功能,生成的验证码添加干扰因素

Vue实现不使用第三方插件,开发随机生成验证码功能 效果图,其中包含了短信验证码功能,以及验证码输入是否正确功能 dom结构 <div class="VerityInputTu"><div class="labelClass">图形验证码</div><div class="tuxingInput…...

# filezilla连接 虚拟机ubuntu系统出错“尝试连接 ECONNREFUSED - 连接被服务器拒绝, 失败,无法连接服务器”解决方案

filezilla连接 虚拟机ubuntu系统出错“尝试连接 ECONNREFUSED - 连接被服务器拒绝&#xff0c; 失败&#xff0c;无法连接服务器”解决方案 一、问题描述&#xff1a; 当我们用filezilla客户端 连接 虚拟机ubuntu系统时&#xff0c;报错“尝试连接 ECONNREFUSED - 连接被服务…...

2024/11/13 英语每日一段

The new policy has drawn many critics. Data and privacy experts said the Metropolitan Transit Authority’s new initiative doesn’t address the underlying problem that causes fare evasion, which is related to poverty and access. Instead, the program tries “…...

【全栈开发平台】全面解析 StackBlitz 最新力作 Bolt.new:AI 驱动的全栈开发平台

文章目录 [TOC]&#x1f31f; Bolt.new 的独特价值1. **无需配置&#xff0c;立刻开发**2. **AI 驱动&#xff0c;智能生成代码**3. **极致的速度与安全性**4. **一键部署&#xff0c;轻松上线**5. **免费开放&#xff0c;生态丰富** &#x1f6e0;️ Bolt.new 使用教程一、快速…...

文献解读-DNAscope: High accuracy small variant calling using machine learning

关键词&#xff1a;基准与方法研究&#xff1b;基因测序&#xff1b;变异检测&#xff1b; 文献简介 标题&#xff08;英文&#xff09;&#xff1a;DNAscope: High accuracy small variant calling using machine learning标题&#xff08;中文&#xff09;&#xff1a;DNAsc…...

成都睿明智科技有限公司解锁抖音电商新玩法

在这个短视频风起云涌的时代&#xff0c;抖音电商以其独特的魅力迅速崛起&#xff0c;成为众多商家争夺的流量高地。而在这片充满机遇与挑战的蓝海中&#xff0c;成都睿明智科技有限公司犹如一颗璀璨的新星&#xff0c;以其专业的抖音电商服务&#xff0c;助力无数品牌实现从零…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...