【深度学习】模型参数冻结:原理、应用与实践
在深度学习领域,模型参数冻结是一种重要的技术手段,它在模型训练和优化过程中有着广泛的应用。本文将详细介绍模型参数冻结的相关概念、应用场景、在代码中的实现方式以及一些实际的案例分析。
一、模型参数冻结的概念
在深度学习模型的训练过程中,模型的参数会根据输入数据和损失函数,通过反向传播算法不断更新,以使得模型能够更好地拟合数据。然而,模型参数冻结则是将模型中的某些参数设置为不可训练的状态。具体而言,在训练过程中,这些被冻结的参数不会参与梯度计算,其值保持固定,不会随着训练的进行而改变。
二、模型参数冻结的应用场景
(一)迁移学习
- 原理
迁移学习利用在大规模数据集上预训练好的模型,将其应用于新的、数据量可能相对较小的特定任务中。在这个过程中,预训练模型已经学习到了丰富的通用特征,如在自然语言处理中,预训练模型(如 BERT)已经对语言的语法、语义等有了很好的理解。 - 冻结参数的好处
- 防止过拟合:新的任务数据集往往较小,如果对整个预训练模型进行训练,很容易导致过拟合。通过冻结预训练模型的大部分参数,只对新添加的用于特定任务的层(如针对新任务的分类层)进行训练,可以利用预训练模型中已经学到的通用知识,同时避免模型在小数据集上过度调整参数,从而减少过拟合的风险。
- 加快训练速度:计算梯度和更新大量参数需要消耗大量的计算资源和时间。冻结大部分参数意味着在反向传播过程中,不需要为这些参数计算梯度,从而大大减少了计算量,加快了训练速度。
(二)模型微调
- 原理
当模型已经在某个数据集上训练好,但需要应用于一个与原任务相似但又有一些差异的新任务时,会进行微调。例如,已经训练好的图像分类模型,现在要对其进行微调以适应新的图像类别。 - 冻结参数的好处
- 保留已有知识:模型在之前的训练中已经学习到了一些有效的特征表示。通过冻结部分参数,可以保留这些已经学到的知识,避免在调整过程中破坏原有的良好特征。
- 针对性调整:只对与新任务相关的部分参数进行更新,可以使模型更有针对性地适应新任务的要求。比如,在微调图像分类模型时,可能只需要调整最后几层的参数,因为前面的层已经学习到了图像的通用特征(如边缘、纹理等),而最后几层更关注于类别相关的特征。
三、在代码中的实现方式(以 PaddlePaddle 为例)
(一)基本的参数冻结操作
在 PaddlePaddle 中,模型的参数都有一个 stop_gradient 属性。当我们想要冻结某个参数时,只需将这个属性设置为 True。以下是一个简单的示例,展示了如何冻结一个线性层的权重参数:
import paddle
import paddle.nn as nn# 创建一个线性层
linear = nn.Linear(10, 10)
# 获取线性层的权重参数
param = linear.weight
# 冻结权重参数
param.stop_gradient = True
(二)遍历模型冻结多个参数
在实际的模型中,可能需要冻结多个参数,甚至是整个模型的部分层的所有参数。以下是一个遍历模型参数并冻结指定层参数的示例。假设我们有一个自定义的模型类,它包含多个层:
import paddle
import paddle.nn as nnclass MyModel(nn.Layer):def __init__(self):super(MyModel, self).__init__()self.fc1 = nn.Linear(100, 50)self.fc2 = nn.Linear(50, 10)def forward(self, x):x = self.fc1(x)x = self.fc2(x)return xmodel = MyModel()# 冻结fc1层的参数
for name, param in model.named_parameters():if 'fc1' in name:param.stop_gradient = True
在上述代码中,我们通过遍历模型的参数,根据参数的名称判断是否属于要冻结的层(这里是 fc1 层),然后将其 stop_gradient 属性设置为 True。
四、案例分析
(一)自然语言处理中的文本分类任务
假设我们要进行一个情感分析任务,使用一个预训练的语言模型(如ERNIE)。我们加载预训练的 ERNIE 模型,并在其基础上添加一个简单的分类层用于判断文本的情感是积极还是消极。
import paddle
from paddlenlp.transformers import ErnieModel
from paddle.nn import functional as F
import paddle.nn as nn# 加载预训练的ERNIE模型
ernie = ErnieModel.from_pretrained('ernie')
# 冻结ERNIE模型的参数
for param in ernie.parameters():param.stop_gradient = True# 添加用于情感分类的层
classifier = nn.Linear(ernie.config["hidden_size"], 2)def forward(self, input_ids, token_type_ids, attention_mask):outputs = ernie(input_ids, token_type_ids, attention_mask)pooled_output = outputs[1] # 获取[CLS]标记的输出logits = classifier(pooled_output)return logits
在这个案例中,通过冻结 ERNIE 模型的参数,我们利用了 ERNIE 在大规模文本数据上学习到的语言知识,只训练新添加的分类层,这样可以在较小的情感分析数据集上快速训练出一个有效的模型,同时减少过拟合的可能性。
(二)计算机视觉中的图像识别微调
假设我们已经有一个在 ImageNet 数据集上训练好的 ResNet 模型,现在要将其应用于一个新的图像识别任务,比如识别特定种类的花朵。
import paddle
import paddle.nn as nn
from paddle.vision.models import resnet50# 加载预训练的ResNet50模型
model = resnet50(pretrained=True)# 冻结前面大部分层的参数
for name, param in model.named_parameters():if 'layer4' not in name: # 这里假设只调整最后一层(layer4)的参数param.stop_gradient = True# 修改最后一层以适应新的类别数量
num_classes = 10 # 假设新的花朵类别有10种
model.fc = nn.Linear(model.fc.in_features, num_classes)
在这个案例中,我们冻结了 ResNet50 模型除最后一层之外的所有参数,因为前面的层已经学习到了图像的通用特征。然后我们修改最后一层(全连接层 fc)的输出维度以适应新的花朵类别数量,这样在微调过程中,模型可以在新的花朵图像数据集上快速适应,同时保留了在 ImageNet 数据集上学到的图像特征知识。
总之,模型参数冻结是深度学习中一种非常实用的技术,它在迁移学习、模型微调等场景中发挥了重要作用,可以帮助我们更好地利用已有的模型和数据,提高模型训练的效率和效果。合理地使用参数冻结技术,可以根据具体的任务和数据情况,优化模型的训练过程,避免过拟合,加快训练速度,并充分利用预训练模型所蕴含的知识。
相关文章:
【深度学习】模型参数冻结:原理、应用与实践
在深度学习领域,模型参数冻结是一种重要的技术手段,它在模型训练和优化过程中有着广泛的应用。本文将详细介绍模型参数冻结的相关概念、应用场景、在代码中的实现方式以及一些实际的案例分析。 一、模型参数冻结的概念 在深度学习模型的训练过程中&…...
数字后端教程之Innovus report_property和get_property使用方法及应用案例
数字IC后端实现Innovus中使用report_property可以报告出各种各样object的属性,主要有cell,net,PG Net,Pin,时钟clock,时序库lib属性,Design属性,timing path,timin arc等…...
JS中console对象内部提供调试方法
console.log() console.log() 是最常用的输出方法,用于将信息输出到浏览器控制台,通常用于普通的调试信息。 用途: 打印普通的消息、变量、对象等。 let user { name: "Alice", age: 25 }; console.log(user); // 输出对象 console.log(&…...
python设计模式
一、单例模式 学习目标:掌握单例模式的作用和写法 可以明显的看出他两是独立的对象,而且是两个完全不同的id 当我们希望是s1和s2是同一个对象,这就是我们所说的单例模式。 最后获得的都是同一个对象,这样就可以避免去重复的创建…...
机器学习 笔记
特征值提取 字典 from sklearn.extaction import DictVectorizer mDictVectorizer(sparseFalse)#sparse是否转换成三元组形式 data[], #传入字典数据 data1model.fit_transform(data) #使用API 英文特征值提取 from sklearn.feature_extraction.text import CountVe…...
江协科技之STM32驱动1.3寸/0.96寸/0.91寸OLED显示屏介绍
目录 编码介绍 ASCII码 汉字编码 取模软件 江协科技OLED库适用器件 SSD1306简介 模块引脚更改 0.91寸OLED适配 模块驱动必备知识 驱动代码 OLED_Font.h OLED.h OLED.c 编码介绍 ASCII码 ASCII码是一套数字到字符的映射标准,它规定了用什么数字表示…...
Spring Security 认证流程,长话简说
一、代码先行 1、设计模式 SpringSecurity 采用的是 责任链 的设计模式,是一堆过滤器链的组合,它有一条很长的过滤器链。 不过我们不需要去仔细了解每一个过滤器的含义和用法,只需要搞定以下几个问题即可:怎么登录、怎么校验账户、认证失败…...
74HC245
74HC245:典型的CMOS型缓冲门电路 在这里用于增加电压...
Java的static关键字和静态代码块
一、当static关键字用来修饰属性时,所修饰的属性就是类属性,而不是对象属性,所以可以做到全类共享。 不能用对象名去调用,只能用类名调用。 二、静态方法只能调用同为静态的方法和属性,非静态方法什么都可以调用。 三…...
Apex 批处理将 account owner 转移,同时实现关联的 opp 和 case 转移
实现和 mass transfer account 一样的功能: global class AccountBatchScript implements Database.Batchable<sObject>,Schedulable{String query;Id oldOwnerId xxxxxxxxxxxx;Id newOwnerId yyyyyyyyyyyy;List<Id> AccountIds new List<Id>(…...
Python | Leetcode Python题解之第557题反转字符串中的单词III
题目: 题解: class Solution:def reverseWords(self, s: str) -> str:stack, res, s [], "", s " "for i in s:stack.append(i)if i " ":while(stack):res stack.pop()return res[1:]...
Spring设计模式
设计模式 是一种软件开发中的解决方案,设计原则。目的是使代码具有扩展性,可维护性,可读性,如: 单例模式(Singleton Pattern) Spring IoC 容器默认会将 Bean 创建为单例,保证一个类…...
信号保存和信号处理
目录 信号保存中重要的概念 内核中信号的保存 对sigset_t操作的函数 对block,pendding,handler三张表的操作 sigpromask 编辑 sigpending 是否有sighandler函数呢? 案例 信号处理 操作系统是如何运行的? 硬件中断 …...
网站小程序app怎么查有没有备案?
网站小程序app怎么查有没有备案?只需要官方一个网址就可以,工信部备案查询官网地址有且只有一个,百度搜索 "ICP备案查询" 找到官方gov.cn网站即可查询! 注:网站小程序app备案查询,可通过输入单位…...
如何利用宏和VBA来提高文档编辑排版速度?
一个真实的文档修改需求 为什么我会去研究VBA呢?主要原因是今年在一个项目里写了太多的文档。文档中很多操作其实都是机械的、重复的,但是偏偏又很耗时。举个例子,当时有这么一个修改需求,修改文档中所有“输入输出需求表格中”添…...
Kafka - 启用安全通信和认证机制_SSL + SASL
文章目录 官方资料概述制作kakfa证书1.1 openssl 生成CA1.2 生成server端秘钥对以及证书仓库1.3 CA 签名证书1.4 服务端秘钥库导入签名证书以及CA根证书1.5 生成服务端信任库并导入CA根数据1.6 生成客户端信任库并导入CA根证书 2 配置zookeeper SASL认证2.1 编写zk_server_jass…...
c++基础32输入和输出
输入和输出 C风格(使用printf和scanf)输出字符输入字符 C风格(使用cin和cout)输出字符输入字符 注意事项 在C和C中,字符的输入和输出可以通过多种方式实现,包括使用标准输入输出库函数如 printf和 scanf&…...
[C++] 函数详解
前言 今天zty带来的是函数的详解,搞了4个小时,大家给个赞呗,zty还要上学,发作品会少一点 先 赞 后 看 养 成 习 惯 先 赞 后 看 养 成 习 惯 先 赞 后 看 养 成 习 惯 演示用编译器及其…...
AMD CPU下pytorch 多GPU运行卡死和死锁解决
参考链接 https://medium.com/amitparekh/solving-ddp-deadlock-with-multiple-gpus-and-amd-cpus-442186632034 简要说明 AMD的IOMMU和NVIDIA的NCCL不兼容问题导致AMD的IOMMU是BIOS 级组件,它基本上充当将虚拟地址映射到 GPU 上的物理地址的接口,它的全部目的是让 CPU 和 G…...
Swift 开发教程系列 - 第12章:协议与协议扩展
协议(Protocol)是 Swift 的一种重要特性,它定义了实现特定功能的方法、属性或其他要求。通过协议,可以将行为定义从具体实现中分离,使代码更具可读性和扩展性。Swift 的协议支持协议扩展,这一特性允许我们为…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
