当前位置: 首页 > news >正文

《传统视觉算法在视觉算法中的地位及应用场景

一、引言

在计算机视觉领域的发展历程中,传统视觉算法扮演了至关重要的角色。尽管近年来深度学习算法在视觉任务中取得了巨大的成功,但传统视觉算法依然具有不可替代的地位。传统视觉算法通常基于数学模型和手工设计的特征,具有计算效率高、可解释性强等优点。在一些特定的应用场景中,传统视觉算法仍然是首选的解决方案。本文将深入探讨传统视觉算法在视觉算法中的地位以及其具体的应用场景。

二、传统视觉算法的特点

  1. 基于数学模型:传统视觉算法通常基于严格的数学模型,如几何变换、滤波、边缘检测等。这些数学模型具有明确的理论基础和计算方法,可以通过数学推导和分析来理解算法的工作原理。例如,霍夫变换是一种用于检测直线和圆等几何形状的算法,它基于参数空间的投票机制,通过对图像中的像素进行投票来确定几何形状的参数。这种基于数学模型的算法具有较高的准确性和可靠性,尤其在处理具有明确几何形状的图像时表现出色。

  2. 手工设计特征:传统视觉算法通常需要手工设计特征来描述图像的内容。这些特征可以是基于颜色、纹理、形状等图像属性的统计量或描述符。例如,SIFT(Scale-Invariant Feature Transform)特征是一种常用的图像特征描述符,它通过检测图像中的关键点,并计算关键点周围的局部特征来描述图像的内容。手工设计的特征具有较高的可解释性,可以根据具体的任务需求进行调整和优化。然而,手工设计特征需要大量的专业知识和经验,并且对于不同的任务和数据集,需要设计不同的特征,这增加了算法的开发难度和时间成本。

  3. 计算效率高:传统视觉算法通常具有较高的计算效率,可以在资源受限的设备上运行。这是因为传统视觉算法通常基于简单的数学运算和图像处理操作,不需要大量的计算资源和存储空间。例如,边缘检测算法可以通过对图像进行卷积操作来检测图像中的边缘,这种操作可以在硬件上高效地实现。相比之下,深度学习算法通常需要大量的计算资源和存储空间,并且在训练和推理过程中需要较长的时间。在一些实时性要求较高的应用场景中,传统视觉算法仍然是首选的解决方案。

  4. 可解释性强:传统视觉算法通常具有较强的可解释性,可以通过分析算法的数学模型和手工设计的特征来理解算法的决策过程。这对于一些对算法可靠性和安全性要求较高的应用场景非常重要。例如,在医疗图像分析中,医生需要了解算法的决策过程,以便对诊断结果进行评估和验证。传统视觉算法的可解释性可以帮助医生更好地理解算法的工作原理,提高诊断的准确性和可靠性。

三、传统视觉算法在视觉算法中的地位

  1. 基础和补充:传统视觉算法是计算机视觉领域的基础,为深度学习算法的发展提供了重要的理论支持和技术基础。深度学习算法通常需要大量的标注数据进行训练,而传统视觉算法可以在标注数据较少的情况下进行有效的图像分析和处理。此外,传统视觉算法可以作为深度学习算法的补充,在一些深度学习算法难以处理的场景中发挥作用。例如,在图像去噪、图像修复等任务中,传统的滤波算法和插值算法仍然是常用的解决方案。

  2. 可靠性和稳定性:传统视觉算法通常具有较高的可靠性和稳定性,可以在不同的环境和条件下进行有效的图像分析和处理。深度学习算法通常需要大量的计算资源和存储空间,并且在训练和推理过程中容易受到数据噪声和模型过拟合等问题的影响。相比之下,传统视觉算法通常基于简单的数学运算和图像处理操作,具有较高的鲁棒性和稳定性。在一些对算法可靠性和稳定性要求较高的应用场景中,传统视觉算法仍然是首选的解决方案。

  3. 实时性要求高的场景:在一些实时性要求较高的应用场景中,传统视觉算法仍然是首选的解决方案。深度学习算法通常需要大量的计算资源和存储空间,并且在训练和推理过程中需要较长的时间。相比之下,传统视觉算法通常具有较高的计算效率,可以在资源受限的设备上实时地进行图像分析和处理。例如,在自动驾驶、机器人视觉等领域,需要对实时采集的图像进行快速的分析和处理,以确保系统的安全性和可靠性。传统视觉算法可以在这些场景中发挥重要的作用。

  4. 可解释性要求高的场景:在一些对算法可解释性要求较高的应用场景中,传统视觉算法仍然是首选的解决方案。深度学习算法通常是一种黑盒模型,难以解释其决策过程。相比之下,传统视觉算法通常具有较强的可解释性,可以通过分析算法的数学模型和手工设计的特征来理解算法的决策过程。例如,在医疗图像分析、金融风险评估等领域,需要对算法的决策过程进行解释和验证,以确保算法的可靠性和安全性。传统视觉算法可以在这些场景中满足可解释性的要求。

四、传统视觉算法的应用场景

  1. 图像预处理:在计算机视觉任务中,图像预处理是一个重要的环节。传统视觉算法可以用于图像的去噪、增强、锐化等预处理操作,以提高图像的质量和可读性。例如,中值滤波是一种常用的图像去噪算法,它可以有效地去除图像中的椒盐噪声和脉冲噪声。直方图均衡化是一种常用的图像增强算法,它可以通过调整图像的灰度分布来提高图像的对比度和亮度。这些传统视觉算法可以在深度学习算法之前对图像进行预处理,提高深度学习算法的性能和准确性。

  2. 目标检测与跟踪:传统视觉算法在目标检测与跟踪任务中也有广泛的应用。例如,基于颜色、纹理、形状等特征的目标检测算法可以在简单的场景中快速地检测出目标物体。基于光流法、卡尔曼滤波等算法的目标跟踪算法可以在视频序列中实时地跟踪目标物体的运动轨迹。这些传统视觉算法在一些实时性要求较高、计算资源有限的场景中仍然是首选的解决方案。

  3. 图像分割:传统视觉算法可以用于图像的分割任务,将图像分割成不同的区域或对象。例如,基于阈值分割、区域生长、边缘检测等算法的图像分割方法可以在简单的场景中有效地分割出图像中的目标区域。这些传统视觉算法在一些对分割精度要求不高、计算资源有限的场景中仍然具有一定的应用价值。

  4. 三维重建:传统视觉算法在三维重建任务中也有重要的应用。例如,基于立体视觉的三维重建算法可以通过对两幅或多幅图像的匹配和三角测量来恢复物体的三维形状。基于结构光的三维重建算法可以通过投射特定的图案到物体表面,然后根据物体表面的反射图案来恢复物体的三维形状。这些传统视觉算法在一些对三维重建精度要求不高、计算资源有限的场景中仍然是常用的解决方案。

  5. 工业检测:在工业生产中,传统视觉算法可以用于产品的质量检测和缺陷检测。例如,基于机器视觉的工业检测系统可以通过对产品的图像进行分析和处理,检测出产品中的缺陷和瑕疵。传统视觉算法可以根据产品的特点和检测要求,设计特定的检测算法和特征,以提高检测的准确性和效率。

  6. 医学图像分析:在医学图像分析领域,传统视觉算法也有广泛的应用。例如,基于边缘检测、区域生长等算法的医学图像分割方法可以将医学图像中的不同组织和器官分割出来,为医生的诊断和治疗提供帮助。基于特征提取和分类器的医学图像分类方法可以对医学图像中的病变进行分类和诊断。传统视觉算法在医学图像分析中的应用可以提高医生的诊断准确性和效率,为患者的治疗提供更好的支持。

五、结论

传统视觉算法在计算机视觉领域中具有重要的地位和广泛的应用场景。尽管深度学习算法在近年来取得了巨大的成功,但传统视觉算法仍然具有不可替代的优势。传统视觉算法基于数学模型和手工设计的特征,具有计算效率高、可解释性强、可靠性和稳定性高等优点。在一些特定的应用场景中,传统视觉算法仍然是首选的解决方案。未来,随着计算机视觉技术的不断发展和创新,传统视觉算法和深度学习算法将相互融合、相互补充,共同推动计算机视觉领域的发展。

以下将分别为传统视觉算法在几个常见应用场景(图像预处理、目标检测与跟踪、图像分割)下提供示例代码,示例代码主要基于 Python 语言和 OpenCV 库来实现。

一、图像预处理 - 中值滤波去噪示例

import cv2
import numpy as np# 读取图像
image = cv2.imread('your_image.jpg')# 应用中值滤波进行去噪
denoised_image = cv2.medianBlur(image, 5)# 显示原始图像和去噪后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Denoised Image', denoised_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中:

  • 首先使用 cv2.imread 函数读取一张图像。
  • 然后通过 cv2.medianBlur 函数对读取的图像应用中值滤波,其中参数 5 表示滤波器的核大小,这里选择 5x5 的核来进行去噪操作。
  • 最后使用 cv2.imshow 函数分别显示原始图像和去噪后的图像,并通过 cv2.waitKey 和 cv2.destroyAllWindows 来控制图像显示窗口的行为。

二、目标检测与跟踪 - 基于颜色特征的目标检测示例

import cv2
import numpy as np# 读取图像
image = cv2.imread('your_image.jpg')# 将图像从BGR颜色空间转换到HSV颜色空间
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 定义要检测目标的颜色范围(这里以红色为例,可根据实际情况调整)
lower_red = np.array([0, 100, 100])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv_image, lower_red, upper_red)lower_red2 = np.array([160, 100, 100])
upper_red2 = np.array([179, 255, 255])
mask2 = cv2.inRange(hsv_image, lower_red2, upper_red2)# 合并两个颜色范围的掩码
mask = cv2.add(mask1, mask2)# 对原始图像和掩码进行位运算,得到检测到目标的图像
result = cv2.bitwise_and(image, image, mask=mask)# 显示原始图像、掩码和检测到目标的图像
cv2.imshow('Original Image', image)
cv2.imshow('Mask', mask)
cv2.imshow('Detected Object', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中:

  • 先读取一张图像,然后将其从 BGR 颜色空间转换到 HSV 颜色空间,因为在 HSV 空间中更容易根据颜色特征来检测目标。
  • 接着定义了要检测目标(这里以红色为例)的颜色范围,通过 cv2.inRange 函数分别创建两个不同范围的掩码(因为红色在 HSV 空间中是分开的两个区间)。
  • 再将两个掩码合并,通过 cv2.add 函数。
  • 最后通过 cv2.bitwise_and 函数对原始图像和掩码进行位运算,得到检测到目标的图像,并分别显示原始图像、掩码和检测到目标的图像。

三、图像分割 - 基于阈值分割示例

import cv2
import numpy as np# 读取图像
image = cv2.imread('your_image.jpg')# 将图像转换为灰度图
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用阈值分割
ret, threshold_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY)# 显示原始图像、灰度图和阈值分割后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Gray Image', gray_image)
cv2.imshow('Threshold Image', threshold_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中:

  • 同样先读取一张图像,然后将其转换为灰度图,因为阈值分割通常在灰度图上进行操作。
  • 通过 cv2.threshold 函数应用阈值分割,其中参数 127 是设定的阈值,255 是超过阈值后的赋值,cv2.THRESH_BINARY 表示二值化的阈值分割方式。
  • 最后分别显示原始图像、灰度图和阈值分割后的图像。

请注意:

  • 在上述示例代码中,你需要将 your_image.jpg 替换为你实际要处理的图像的文件名及路径。
  • 这些示例只是传统视觉算法在相应应用场景下的简单演示,实际应用中可能需要根据具体情况进行更多的调整和优化。

相关文章:

《传统视觉算法在视觉算法中的地位及应用场景

一、引言 在计算机视觉领域的发展历程中,传统视觉算法扮演了至关重要的角色。尽管近年来深度学习算法在视觉任务中取得了巨大的成功,但传统视觉算法依然具有不可替代的地位。传统视觉算法通常基于数学模型和手工设计的特征,具有计算效率高、…...

老老实实干一辈子程序员是没出息的!这本证书你早该学!

一、程序员有没有必要学软考? 当然有,因为你不可能一辈子都是程序员。 你了解或者接触过30岁、35岁以上的程序员去向吗? 我毕业快十年了,当初正赶上互联网时代的浪潮,好几个学计算机的同学毕业后去了一线城市或者深…...

鸿蒙next版开发:相机开发-录像(ArkTS)

在HarmonyOS 5.0中,ArkTS提供了一套完整的API来管理相机功能,特别是录像功能。本文将详细介绍如何在ArkTS中实现录像功能,并提供代码示例进行详细解读。 录像功能开发步骤 1. 导入相关接口 首先,需要导入相机相关的接口&#x…...

闯关leetcode——3206. Alternating Groups I

大纲 题目地址内容 解题代码地址 题目 地址 https://leetcode.com/problems/alternating-groups-i/description/ 内容 There is a circle of red and blue tiles. You are given an array of integers colors. The color of tile i is represented by colors[i]: colors[i…...

多个摄像机画面融合:找到同一个目标在多个画面中的伪三维坐标,找出这几个摄像头间的转换矩阵

搞算法,重要的是解决问题的思想,不要再局限于语言、框架、性能!!! 要解决的问题是:在某一个摄像头画面中,目标会被遮挡或者丢失,但在另外一个摄像机画面中,目标完整&…...

Three.js性能优化和实践建议

Three.js 是一个功能强大的 3D 引擎,当场景足够大的时候,就会出现卡顿的现象,首先要保证电脑的性能够用,然后看看下面方法,帮助你提高应用的运行效率。 1. 使用 stats.js 监视性能 在进行任何优化之前,首…...

C#入门 023 什么是类(Class)

什么是“类” 是一种数据结构 是一种数据类型 代表现实世界中的“种类” 构造器和析构器 析构器 析构器(Destructor)是一种特殊的成员方法,用于在对象被垃圾回收器(Garbage Collector, GC)回收之前执行清理操作。…...

一篇Spring Boot 笔记

一、Spring Boot 简介 Spring Boot 是一个用于创建独立的、基于 Spring 的生产级应用程序的框架。它简化了 Spring 应用的初始搭建和开发过程,通过自动配置等功能,让开发者能够快速地构建应用,减少了大量的样板代码和复杂的配置。 二、核心特…...

一生一芯 预学习阶段 NEMU代码学习(2)

接上回&#xff1a;一生一芯 预学习阶段 NEMU代码学习&#xff08;1&#xff09; 上次说到这里 static int cmd_c(char *args) {cpu_exec(-1);return 0; } 当输入c时&#xff0c;会执行&#xff1a;cpu_exec(-1); void cpu_exec(uint64_t n) {g_print_step (n < MAX_IN…...

《手写Spring渐进式源码实践》实践笔记(第二十章 实现简单ORM框架)

文章目录 第二十章 简单ORM框架实现背景技术背景基本概念工作原理优点缺点常见的ORM框架 业务背景 目标设计实现代码结构类图实现步骤 测试事先准备属性配置文件测试用例(selectOne)测试结果测试用例(selectList)测试结果 总结 第二十章 简单ORM框架实现 背景 技术背景 ORM&…...

AI技术赋能电商行业:创新应用与未来展望

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《热点时事》 期待您的关注 引言 随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;技术正逐步渗透到各行各业&a…...

windows 11编译安装ffmpeg(包含ffplay)

一、源码及安装包下载 1.1&#xff0c;ffmpeg源码包下载 下载地址&#xff1a;Download FFmpeg 1.2&#xff0c;mysys下载 下载地址&#xff1a;MSYS2 1.3&#xff0c;libx264源码包下载 下载地址&#xff1a;x264, the best H.264/AVC encoder - VideoLAN 二、软件安装 2.1&…...

系统启动时将自动加载环境变量,并后台启动 MinIO、Nacos 和 Redis 服务

服务器信息 服务器 IP&#xff1a;192.168.1.44服务器用户&#xff1a;changzhou用户密码&#xff1a;XXXXXXXX Nacos 数据库用户信息&#xff1a; 账号&#xff1a;cz_nacos密码&#xff1a;XXXXXXXX Nacos 内网地址&#xff1a;http://192.168.1.44:8848/nacos 账号&#x…...

[ACTF2020 新生赛]Upload 1--详细解析

信息收集 题目告诉我们是一道upload&#xff0c;也就是文件上传漏洞题目。 进入界面&#xff0c;是一个灯泡&#xff0c;将鼠标放在图标上就会出现文件上传的相应位置&#xff1a; 思路 文件上传漏洞&#xff0c;先看看有没有前端校验。 在js源码中找到了前端校验&#xff…...

power bi中的related函数解析

在Power BI中&#xff0c;RELATED函数是一种用于检索相关表中数据的函数。它用于在一个表中检索与当前行相关联的另一个表中的数据。 销售成本 [销售数量]*related(商品表[进价])...

目前区块链服务商备案支持的区块链技术类型

status"success"data1-name"比特币/Bitcoin/BTC"3-name"以太坊/Ethereum/ETH"875-name"超级账本/Hyperledger"5-name"柚子/EOS/EOS"6-name"恒星链/Stellar/XLM"1055-name"Quorum"7-name"莱特币/Li…...

CatBoost中的预测偏移和排序提升

在 CatBoost 中&#xff0c;预测偏移&#xff08;Prediction Shift&#xff09; 和 排序提升&#xff08;Ordered Boosting&#xff09; 是其关键概念和创新点。CatBoost 通过引入 排序提升 解决了梯度提升决策树&#xff08;GBDT&#xff09;算法中常见的 预测偏移问题&#x…...

python: postgreSQL using psycopg2 or psycopg

psycopg2 # encoding: utf-8 # 版权所有 2024 ©涂聚文有限公司 # 許可資訊查看&#xff1a;言語成了邀功的功臣&#xff0c;還需要行爲每日來值班嗎&#xff1f; # 描述&#xff1a; pip install --upgrade pip PostgreSQL database adapter for Python # pip install…...

从 MySQL 5.7 到 8.0:理解 GROUP BY 的新规则与实战优化20241112

&#x1f3af; 从 MySQL 5.7 到 8.0&#xff1a;理解 GROUP BY 的新规则与实战优化 &#x1f50e; 引言 随着 MySQL 的不断升级&#xff0c;从 5.7 到 8.0&#xff0c;不仅性能得到提升&#xff0c;其对 SQL 标准的严格执行也显著提高。GROUP BY 的行为变化就是一个典型例子。…...

npm完整发包流程(亲测可验证)

1. 准备工作 &#xff08;1&#xff09; 在npm官网上注册一个账号 &#xff08;2&#xff09; 注册成功之后&#xff0c;npm会发送一封邮件给你&#xff0c;点击邮件里面的链接&#xff0c;做确认关联操作&#xff08;必需&#xff09; 2. 创建自己的npm包 &#xff08;…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...