当前位置: 首页 > news >正文

电信数据清洗案例:利用MapReduce实现高效数据预处理

电信数据清洗案例:利用MapReduce实现高效数据预处理

在大数据时代,电信行业积累了大量的用户通话、短信、上网等行为数据。在数据分析和机器学习模型训练前,对这些数据进行清洗是至关重要的一步。MapReduce 是一种高效的数据处理模型,非常适合对大规模电信数据进行预处理。本案例展示如何利用 MapReduce 进行电信数据清洗,以确保后续分析的准确性和有效性。


目标

在海量电信数据中进行数据清洗,包括以下主要任务:

  1. 过滤无效数据:去除缺失或不合规的数据行。
  2. 数据格式标准化:统一用户ID、时间戳格式等字段。
  3. 去除重复记录:删除通话记录中的重复项,以减少数据冗余。
数据格式

假设电信通话记录的数据格式如下:

Caller_ID, Receiver_ID, Call_Duration, Timestamp
1234567890, 0987654321, 120, 2023-01-01 12:00:00
2345678901, 1234567890, 90, 2023-01-01 12:01:00
1234567890, 0987654321, NULL, 2023-01-01 12:02:00
1234567890, 0987654321, 120, 2023-01-01 12:00:00

解决方案:使用 MapReduce 进行数据清洗

1. Map阶段

在Map阶段中,数据被逐行处理并输出键值对。处理步骤如下:

  • 数据验证与清理:确保每条数据包含有效的 Caller_IDReceiver_IDCall_Duration,若存在缺失值或格式错误,直接过滤掉该行数据。
  • 格式化处理:对数据进行格式化,确保 Caller_IDReceiver_ID 使用统一格式,比如去除空格、规范化成国际标准格式等。
  • 构造键值对:以 Caller_IDReceiver_IDTimestamp 的组合作为键,以通话时长为值,输出键值对供后续处理。
# Mapper 函数示例
def mapper(record):caller_id, receiver_id, duration, timestamp = record.strip().split(",")# 数据有效性检查if not caller_id or not receiver_id or duration == "NULL":return  # 过滤无效记录# 标准化数据格式key = f"{caller_id.strip()}-{receiver_id.strip()}-{timestamp.strip()}"# 输出键值对yield key, duration.strip()
2. Shuffle和Sort阶段

在Shuffle和Sort阶段,MapReduce 框架自动将具有相同键的记录进行分组,方便下一步去重。相同的 Caller_IDReceiver_ID 以及 Timestamp 的记录将被汇集到一组,为后续的去重操作打下基础。

3. Reduce阶段

在Reduce阶段,对分组后的数据进行去重和进一步清理:

  • 去除重复项:对于每组相同的 Caller_IDReceiver_ID,只保留一条记录(例如首条记录)。
  • 数据汇总:在此阶段,也可以根据业务需求进行简单的数据汇总或统计,比如计算通话总时长。
# Reducer函数示例
def reducer(key, values):# 保留唯一记录unique_duration = next(iter(values))  # 保留第一个有效通话时长值yield key, unique_duration

MapReduce 工作流

完整的 MapReduce 数据清洗工作流如下:

  1. 输入数据:加载电信数据文件,读取每行记录。
  2. Map阶段:运行 mapper(),生成键值对并过滤掉不合规的数据。
  3. Shuffle和Sort阶段:MapReduce 自动对相同键的键值对分组。
  4. Reduce阶段:运行 reducer() 去除重复记录,输出清洗后的记录。

结果示例

清洗后的电信通话记录示例,去除了无效和重复数据:

1234567890-0987654321-2023-01-01 12:00:00, 120
2345678901-1234567890-2023-01-01 12:01:00, 90

优势

  • 高效的数据清洗:MapReduce 允许分布式处理,能够高效处理海量电信数据。
  • 便于扩展:MapReduce 的分布式特性使得数据量增加时,只需增加节点即可应对,保证了数据处理的高效性。
  • 数据质量提升:通过自动过滤和去重,确保了数据质量,为后续的数据分析和模型训练奠定了良好的基础。

适用场景

该方法不仅适用于电信行业,还适合任何拥有大规模、重复性数据的场景,例如网络日志清洗、金融交易数据处理等。MapReduce 的应用可以显著提高大规模数据处理的效率与准确性。


通过这个案例,我们展示了如何利用 MapReduce 来高效地清洗和处理电信数据,使得原始数据转换为高质量的数据输入,以支持后续的数据分析和模型构建。

相关文章:

电信数据清洗案例:利用MapReduce实现高效数据预处理

电信数据清洗案例:利用MapReduce实现高效数据预处理 在大数据时代,电信行业积累了大量的用户通话、短信、上网等行为数据。在数据分析和机器学习模型训练前,对这些数据进行清洗是至关重要的一步。MapReduce 是一种高效的数据处理模型&#x…...

react 中 FC 模块作用

React.FC 是一个泛型类型,用于定义函数组件的类型 一、类型定义和代码可读性 1. 明确组件类型 使用React.FC定义一个组件时,使得组件的输入(props)和输出(返回的 React 元素)都有明确的类型定义。 impo…...

多模态大模型(1)--CLIP

CLIP(Contrastive Language-Image Pre-training)模型是一种多模态预训练神经网络,由OpenAI在2021年发布。它通过对比学习的方式,将图像和文本映射到同一个向量空间中,从而实现跨模态的检索和分类。下面介绍其基础功能&…...

opencv入门学习总结

opencv学习总结 不多bb,直接上代码!!! 案例一: import cv2 # 返回当前安装的 OpenCV 库的版本信息 并且是字符串格式 print(cv2.getVersionString()) """ 作用:它可以读取不同格式的图像文…...

C/C++内存管理 | new的机制 | 重载自己的operator new

一、C/C内存分布 1. 内存分区 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的。内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信 .堆用于程序运行时动态内…...

知识库管理系统:企业数字化转型的加速器

在数字化转型的大潮中,知识库管理系统(KBMS)已成为企业提升效率和创新能力的关键工具。本文将探讨知识库管理系统的定义、企业建立知识库的必要性,以及如何快速搭建企业知识库。 知识库管理系统是什么? 知识库管理系统…...

uniapp 如何使用vuex store (亲测)

首先是安装: npm install vuexnext --save 安装之后,Vue2 这样写 不管在哪里,建立一个JS文件,假设命名:store.js 代码这样写: import Vue from vue; import Vuex from vuex;Vue.use(Vuex);const store…...

[编译报错]ImportError: No module named _sqlite3解决办法

1. 问题描述&#xff1a; 在使用python进行代码编译时&#xff0c;提示下面报错&#xff1a; "/home/bspuser/BaseTools/Source/Python/Workspace/WorkspaceDatabase.py", line 18, in <module>import sqlite3File "/usr/local/lib/python2.7/sqlite3/_…...

【旷视科技-注册/登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…...

python学习记录16

字符串总结 python程序使用unicode编码&#xff0c;中文字符与英文字符都占一个字符&#xff0c;但英文字符只占一个字节&#xff0c;中文字符若按照utf-8格式编码占3个字节。 &#xff08;1&#xff09;字符串常用方法 1&#xff09;大小写转化 string.upper()#将所有字母…...

AI 大模型在软件开发中的角色

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/402a907e12694df5a34f8f266385f3d2.png#pic_center> &#x1f393;作者简介&#xff1a;全栈领域优质创作者 &#x1f310;个人主页&#xff1a;百锦再新空间代码工作室 &#x1f4de;工作室&#xff1a;新空间代…...

React中类组件和函数组件的理解和区别

react代码模块分为类组件和函数组件。 从语法和定义、内部状态管理、生命周期、性能、可读性和维护性、上下文、集成状态管理库等角度对比React中类组件和函数组件。 1、语法和定义 类组件&#xff1a; 使用 ES6 的类&#xff08;class&#xff09;语法定义的 React 组件。…...

Day62||prim算法精讲 |kruskal算法精讲

prim算法精讲 53. 寻宝&#xff08;第七期模拟笔试&#xff09; 题目描述 在世界的某个区域&#xff0c;有一些分散的神秘岛屿&#xff0c;每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路&#xff0c;方便运输。 不同岛屿之间&#xff0c;路途距离不同&…...

upload-labs通关练习

目录 环境搭建 第一关 第二关 第三关 第四关 第五关 第六关 第七关 第八关 第九关 第十关 第十一关 第十二关 第十三关 第十四关 第十五关 第十六关 第十七关 第十八关 第十九关 第二十关 总结 环境搭建 upload-labs是一个使用php语言编写的&#xff0c…...

wordpress搭建主题可配置json

网站首页展示 在线访问链接 http://dahua.bloggo.chat/ 配置json文件 我使用的是argon主题&#xff0c;你需要先安装好主题&#xff0c;然后可以导入我的json文件一键配置。 需要json界面配置文件的&#xff0c;可以在评论区回复&#xff0c;看见评论我会私发给你。~...

RWKV-5/6 论文被 COLM 2024 收录

由 Bo PENG 和 RWKV 开源社区共同完成的 RWKV-5/6架构论文《Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence》被顶级会议 COLM 2024 收录。 这是继 RWKV-4 架构论文《RWKV: Reinventing RNNs for the Transformer Era》被 EMNLP 2023 收录之后&…...

MinIO分片下载超大文件

一、前言 各位亲爱的们&#xff0c;之前介绍过了上传超大文件到MinIO&#xff1a; MinIO分片上传超大文件&#xff08;纯服务端&#xff09;MinIO分片上传超大文件&#xff08;非纯服务端&#xff09; 这里最后再补充一下从MinIO下载超大文件。 二、从MinIO分片下载大文件 …...

Vue3 -- 新组件【谁学谁真香系列6】

Teleport Teleport是什么?–Teleport是一种能够将我们的组件html结构移动到指定位置的技术。 父组件: <template><div calss="outer"><h2>我是App组件</h2><img src="https://z1.ax1x.com/2023/11/19/piNxLo4.jpg" alt=&qu…...

Openstack3--本地仓库搭建(ftp源搭建失败)

上传镜像 后面的ftp源做不了&#xff0c;请将下面的本地openstack源在控制节点和计算节点都配置 在控制节点上传&#xff0c;安装ftp并配置启动后再在计算节点配置 将openStack-train.iso文件通过MobaXterm远程连接软件上传至控制节点 /opt 目录下 挂载 进入 /opt 目录 创建…...

【初阶数据结构与算法】链表刷题之移除链表元素、反转链表、找中间节点、合并有序链表、链表的回文结构

文章目录 一、移除链表元素思路一思路二 二、合并两个有序链表思路&#xff1a;优化&#xff1a; 三、反转链表思路一思路二 四、链表的中间节点思路一思路二 五、综合应用之链表的回文结构思路一&#xff1a;思路二&#xff1a; 一、移除链表元素 题目链接&#xff1a;https:…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙

WebGL&#xff1a;在浏览器中解锁3D世界的魔法钥匙 引言&#xff1a;网页的边界正在消失 在数字化浪潮的推动下&#xff0c;网页早已不再是静态信息的展示窗口。如今&#xff0c;我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室&#xff0c;甚至沉浸式的V…...

大数据驱动企业决策智能化的路径与实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;慌ZHANG-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、引言&#xff1a;数据驱动的企业竞争力重构 在这个瞬息万变的商业时代&#xff0c;“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...