当前位置: 首页 > news >正文

电信数据清洗案例:利用MapReduce实现高效数据预处理

电信数据清洗案例:利用MapReduce实现高效数据预处理

在大数据时代,电信行业积累了大量的用户通话、短信、上网等行为数据。在数据分析和机器学习模型训练前,对这些数据进行清洗是至关重要的一步。MapReduce 是一种高效的数据处理模型,非常适合对大规模电信数据进行预处理。本案例展示如何利用 MapReduce 进行电信数据清洗,以确保后续分析的准确性和有效性。


目标

在海量电信数据中进行数据清洗,包括以下主要任务:

  1. 过滤无效数据:去除缺失或不合规的数据行。
  2. 数据格式标准化:统一用户ID、时间戳格式等字段。
  3. 去除重复记录:删除通话记录中的重复项,以减少数据冗余。
数据格式

假设电信通话记录的数据格式如下:

Caller_ID, Receiver_ID, Call_Duration, Timestamp
1234567890, 0987654321, 120, 2023-01-01 12:00:00
2345678901, 1234567890, 90, 2023-01-01 12:01:00
1234567890, 0987654321, NULL, 2023-01-01 12:02:00
1234567890, 0987654321, 120, 2023-01-01 12:00:00

解决方案:使用 MapReduce 进行数据清洗

1. Map阶段

在Map阶段中,数据被逐行处理并输出键值对。处理步骤如下:

  • 数据验证与清理:确保每条数据包含有效的 Caller_IDReceiver_IDCall_Duration,若存在缺失值或格式错误,直接过滤掉该行数据。
  • 格式化处理:对数据进行格式化,确保 Caller_IDReceiver_ID 使用统一格式,比如去除空格、规范化成国际标准格式等。
  • 构造键值对:以 Caller_IDReceiver_IDTimestamp 的组合作为键,以通话时长为值,输出键值对供后续处理。
# Mapper 函数示例
def mapper(record):caller_id, receiver_id, duration, timestamp = record.strip().split(",")# 数据有效性检查if not caller_id or not receiver_id or duration == "NULL":return  # 过滤无效记录# 标准化数据格式key = f"{caller_id.strip()}-{receiver_id.strip()}-{timestamp.strip()}"# 输出键值对yield key, duration.strip()
2. Shuffle和Sort阶段

在Shuffle和Sort阶段,MapReduce 框架自动将具有相同键的记录进行分组,方便下一步去重。相同的 Caller_IDReceiver_ID 以及 Timestamp 的记录将被汇集到一组,为后续的去重操作打下基础。

3. Reduce阶段

在Reduce阶段,对分组后的数据进行去重和进一步清理:

  • 去除重复项:对于每组相同的 Caller_IDReceiver_ID,只保留一条记录(例如首条记录)。
  • 数据汇总:在此阶段,也可以根据业务需求进行简单的数据汇总或统计,比如计算通话总时长。
# Reducer函数示例
def reducer(key, values):# 保留唯一记录unique_duration = next(iter(values))  # 保留第一个有效通话时长值yield key, unique_duration

MapReduce 工作流

完整的 MapReduce 数据清洗工作流如下:

  1. 输入数据:加载电信数据文件,读取每行记录。
  2. Map阶段:运行 mapper(),生成键值对并过滤掉不合规的数据。
  3. Shuffle和Sort阶段:MapReduce 自动对相同键的键值对分组。
  4. Reduce阶段:运行 reducer() 去除重复记录,输出清洗后的记录。

结果示例

清洗后的电信通话记录示例,去除了无效和重复数据:

1234567890-0987654321-2023-01-01 12:00:00, 120
2345678901-1234567890-2023-01-01 12:01:00, 90

优势

  • 高效的数据清洗:MapReduce 允许分布式处理,能够高效处理海量电信数据。
  • 便于扩展:MapReduce 的分布式特性使得数据量增加时,只需增加节点即可应对,保证了数据处理的高效性。
  • 数据质量提升:通过自动过滤和去重,确保了数据质量,为后续的数据分析和模型训练奠定了良好的基础。

适用场景

该方法不仅适用于电信行业,还适合任何拥有大规模、重复性数据的场景,例如网络日志清洗、金融交易数据处理等。MapReduce 的应用可以显著提高大规模数据处理的效率与准确性。


通过这个案例,我们展示了如何利用 MapReduce 来高效地清洗和处理电信数据,使得原始数据转换为高质量的数据输入,以支持后续的数据分析和模型构建。

相关文章:

电信数据清洗案例:利用MapReduce实现高效数据预处理

电信数据清洗案例:利用MapReduce实现高效数据预处理 在大数据时代,电信行业积累了大量的用户通话、短信、上网等行为数据。在数据分析和机器学习模型训练前,对这些数据进行清洗是至关重要的一步。MapReduce 是一种高效的数据处理模型&#x…...

react 中 FC 模块作用

React.FC 是一个泛型类型,用于定义函数组件的类型 一、类型定义和代码可读性 1. 明确组件类型 使用React.FC定义一个组件时,使得组件的输入(props)和输出(返回的 React 元素)都有明确的类型定义。 impo…...

多模态大模型(1)--CLIP

CLIP(Contrastive Language-Image Pre-training)模型是一种多模态预训练神经网络,由OpenAI在2021年发布。它通过对比学习的方式,将图像和文本映射到同一个向量空间中,从而实现跨模态的检索和分类。下面介绍其基础功能&…...

opencv入门学习总结

opencv学习总结 不多bb,直接上代码!!! 案例一: import cv2 # 返回当前安装的 OpenCV 库的版本信息 并且是字符串格式 print(cv2.getVersionString()) """ 作用:它可以读取不同格式的图像文…...

C/C++内存管理 | new的机制 | 重载自己的operator new

一、C/C内存分布 1. 内存分区 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的。内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信 .堆用于程序运行时动态内…...

知识库管理系统:企业数字化转型的加速器

在数字化转型的大潮中,知识库管理系统(KBMS)已成为企业提升效率和创新能力的关键工具。本文将探讨知识库管理系统的定义、企业建立知识库的必要性,以及如何快速搭建企业知识库。 知识库管理系统是什么? 知识库管理系统…...

uniapp 如何使用vuex store (亲测)

首先是安装: npm install vuexnext --save 安装之后,Vue2 这样写 不管在哪里,建立一个JS文件,假设命名:store.js 代码这样写: import Vue from vue; import Vuex from vuex;Vue.use(Vuex);const store…...

[编译报错]ImportError: No module named _sqlite3解决办法

1. 问题描述&#xff1a; 在使用python进行代码编译时&#xff0c;提示下面报错&#xff1a; "/home/bspuser/BaseTools/Source/Python/Workspace/WorkspaceDatabase.py", line 18, in <module>import sqlite3File "/usr/local/lib/python2.7/sqlite3/_…...

【旷视科技-注册/登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…...

python学习记录16

字符串总结 python程序使用unicode编码&#xff0c;中文字符与英文字符都占一个字符&#xff0c;但英文字符只占一个字节&#xff0c;中文字符若按照utf-8格式编码占3个字节。 &#xff08;1&#xff09;字符串常用方法 1&#xff09;大小写转化 string.upper()#将所有字母…...

AI 大模型在软件开发中的角色

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/402a907e12694df5a34f8f266385f3d2.png#pic_center> &#x1f393;作者简介&#xff1a;全栈领域优质创作者 &#x1f310;个人主页&#xff1a;百锦再新空间代码工作室 &#x1f4de;工作室&#xff1a;新空间代…...

React中类组件和函数组件的理解和区别

react代码模块分为类组件和函数组件。 从语法和定义、内部状态管理、生命周期、性能、可读性和维护性、上下文、集成状态管理库等角度对比React中类组件和函数组件。 1、语法和定义 类组件&#xff1a; 使用 ES6 的类&#xff08;class&#xff09;语法定义的 React 组件。…...

Day62||prim算法精讲 |kruskal算法精讲

prim算法精讲 53. 寻宝&#xff08;第七期模拟笔试&#xff09; 题目描述 在世界的某个区域&#xff0c;有一些分散的神秘岛屿&#xff0c;每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路&#xff0c;方便运输。 不同岛屿之间&#xff0c;路途距离不同&…...

upload-labs通关练习

目录 环境搭建 第一关 第二关 第三关 第四关 第五关 第六关 第七关 第八关 第九关 第十关 第十一关 第十二关 第十三关 第十四关 第十五关 第十六关 第十七关 第十八关 第十九关 第二十关 总结 环境搭建 upload-labs是一个使用php语言编写的&#xff0c…...

wordpress搭建主题可配置json

网站首页展示 在线访问链接 http://dahua.bloggo.chat/ 配置json文件 我使用的是argon主题&#xff0c;你需要先安装好主题&#xff0c;然后可以导入我的json文件一键配置。 需要json界面配置文件的&#xff0c;可以在评论区回复&#xff0c;看见评论我会私发给你。~...

RWKV-5/6 论文被 COLM 2024 收录

由 Bo PENG 和 RWKV 开源社区共同完成的 RWKV-5/6架构论文《Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence》被顶级会议 COLM 2024 收录。 这是继 RWKV-4 架构论文《RWKV: Reinventing RNNs for the Transformer Era》被 EMNLP 2023 收录之后&…...

MinIO分片下载超大文件

一、前言 各位亲爱的们&#xff0c;之前介绍过了上传超大文件到MinIO&#xff1a; MinIO分片上传超大文件&#xff08;纯服务端&#xff09;MinIO分片上传超大文件&#xff08;非纯服务端&#xff09; 这里最后再补充一下从MinIO下载超大文件。 二、从MinIO分片下载大文件 …...

Vue3 -- 新组件【谁学谁真香系列6】

Teleport Teleport是什么?–Teleport是一种能够将我们的组件html结构移动到指定位置的技术。 父组件: <template><div calss="outer"><h2>我是App组件</h2><img src="https://z1.ax1x.com/2023/11/19/piNxLo4.jpg" alt=&qu…...

Openstack3--本地仓库搭建(ftp源搭建失败)

上传镜像 后面的ftp源做不了&#xff0c;请将下面的本地openstack源在控制节点和计算节点都配置 在控制节点上传&#xff0c;安装ftp并配置启动后再在计算节点配置 将openStack-train.iso文件通过MobaXterm远程连接软件上传至控制节点 /opt 目录下 挂载 进入 /opt 目录 创建…...

【初阶数据结构与算法】链表刷题之移除链表元素、反转链表、找中间节点、合并有序链表、链表的回文结构

文章目录 一、移除链表元素思路一思路二 二、合并两个有序链表思路&#xff1a;优化&#xff1a; 三、反转链表思路一思路二 四、链表的中间节点思路一思路二 五、综合应用之链表的回文结构思路一&#xff1a;思路二&#xff1a; 一、移除链表元素 题目链接&#xff1a;https:…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...