当前位置: 首页 > news >正文

树形dp总结

这类题型在 dp 中很常见,于是做一个总结吧!!!

最经典的题:没有上司的舞会

传送门:没有上司的舞会 - 洛谷

状态表示:

dp[i][0] 为 以 i 为根的子树中,选择 i 节点的最大欢乐值

dp[i][1] 为 以 i 为根的子树中,不选择 i 节点的最大欢乐值

状态转移方程  dp[i][0] += dp[[j][1]        dp[i][1] += dp[j][0]      j 为 i 的子节点

AC代码:

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 6e3 + 10;
int a[N];
int h[N], e[N], ne[N], idx;
bool flag[N] = { 0 };
int f[N][2];
void add(int a, int  b)
{e[idx] = b;ne[idx] = h[a];h[a] = idx++;
}
void dfs(int u , int fa ) // 树形 dp 中一般都是用 dfs
{for (int i = h[u]; i != -1; i = ne[i]){int j = e[i];dfs(j, u);f[u][0] += max(f[j][0] , f[j][1] );f[u][1] += f[j][0];}
}
void solve()
{memset(h, -1, sizeof h);int n; cin >> n;for (int i = 1; i <= n; i++) cin >> a[i];for (int i = 1; i < n; i++){int a, b;cin >> a >> b;add(b, a);flag[a] = true;}int root = -1;for (int i = 1; i <= n; i++){f[i][1] += a[i];if (!flag[i]) root = i;}dfs(root, -1 );cout << max (f[root][1], f[root][0]) << endl;
}
signed main()
{int tt = 1;while (tt--)solve();return 0;
}

再来一道经典题目:选课 (树形dp 点)

传送门:[CTSC1997] 选课 - 洛谷

状态表示:

dp[i][[j] 以 i 为根的子树中,选择 j 个节点的最大学分

状态转移方程:

 dp[i][j] = dp[i][j - k] + dp[t][k] ( t 为 j 的子节点 ,k 是从子树中选择 k 个节点 )

注意:

1.你要统计子树中节点的个数

2. 需要假设一个虚拟源节点,因此要把 m++

AC代码:

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 620;
int f[N][N]; int n, m;
int h[N], e[N], ne[N], idx, score[N];
int Size[N];
void add(int a, int b)
{e[idx] = b; ne[idx] = h[a]; h[a] = idx++;
}
void dfs(int u, int fa)
{Size[u] += 1;f[u][1] += score[u];for (int i = h[u]; i != -1; i = ne[i]){int j = e[i];if (j == fa)continue;dfs(j, u);Size[u] += Size[j];for (int t = min(m, Size[u]); t; t--) // 注意 t 要从大到小遍历// 如果 t 要从小到大遍历,就会导致当 t 变大时,更新最新状态时,会用到这个子树刚刚更新的状态{for (int k = min(Size[j], t - 1); k >= 0; k--){f[u][t] = max(f[u][t], f[u][t - k ] + f[j][k] );}}}
}
signed main()
{memset(h, -1, sizeof h);cin >> n >> m;m++;for (int i = 1; i <= n; i++){int x; cin >> x; add(i, x); add(x, i);cin >> score[i];}dfs(0, -1);cout << f[0][m] << endl;return 0;
}

经典题目:二叉苹果树(树形dp 边)

传送门:https://www.luogu.com.cn/problem/P2015

状态表示:dp[i][j] 以 i 为根的子树中,保留 j 条边的最多苹果树

这道题有一个隐含的条件,当某条边被保留下来时,从根节点到这条边的路径上的所有边也都必须保留下来

状态转移方程:

dp[i][j] = max( dp[i][j] , dp[i][j-k-1] + dp[t][k] + w[i] ) ( t 为子节点,k是值子树中选择 k 条边)

注意这个题要统计子树中边的条数

AC代码:

#include<bits/stdc++.h>
using namespace std;
const int N = 220;
int f[N][N];
int h[N] , e[N] , ne[N] , idx , w[N];
int Size[N];
int n , m;
void add( int a , int b , int c )
{w[idx] =c ; e[idx] = b; ne[idx] = h[a] ; h[a] = idx++;
}
void dfs( int u , int fa )
{for( int i = h[u] ; i != -1 ; i = ne[i] ){int j = e[i];if( j == fa )continue;dfs( j , u );Size[u] += Size[j] + 1;for( int t = min( Size[u] , m ) ; t  ; t-- ){for( int k = min(Size[j] , t - 1 ) ; k >= 0 ; k-- ){f[u][t] = max( f[u][t] , f[u][t-k-1] + f[j][k] + w[i] );}}}
}
signed main()
{memset( h , -1 , sizeof h );cin >> n >> m;for( int i = 0 ; i < n - 1; i ++){int a , b , c; cin>> a >> b >> c;add( a , b ,c  );add( b , a , c );}dfs( 1 , -1 );cout << f[1][m] << endl;return 0;
}

相关文章:

树形dp总结

这类题型在 dp 中很常见&#xff0c;于是做一个总结吧&#xff01;&#xff01;&#xff01; 最经典的题&#xff1a;没有上司的舞会 传送门&#xff1a;没有上司的舞会 - 洛谷 状态表示&#xff1a; dp[i][0] 为 以 i 为根的子树中&#xff0c;选择 i 节点的最大欢乐值 d…...

【算法一周目】双指针(2)

目录 有效三角形的个数 解题思路 C代码实现 和为s的两个数字 解题思路 C代码实现 三数之和 解题思路 C代码实现 四数之和 解题思路 C代码实现 有效三角形的个数 题目链接&#xff1a;611. 有效三角形的个数题目描述&#xff1a;给定一个包含非负整数的数组nums&…...

vue内置方法总结

目录 1. 生命周期钩子方法 2. 响应式系统方法 3. DOM 更新方法 4. 事件处理方法 5. 访问子组件和 DOM 元素 6. 数据观察方法 7. 其他方法 1. 生命周期钩子方法 这些方法在 Vue 实例的不同生命周期阶段自动调用。 beforeCreate&#xff1a; 在实例初始化之后&#xff0c…...

面向对象分析与设计

前言: 感觉书本上和线上课程, 讲的太抽象, 不好理解, 但软件开发不就是为了开发应用程序吗?! 干嘛搞这么抽象,对吧, 下面是个人对于软件开发的看法, 结合我的一些看法, 主打简单易懂, 当然,我一IT界小菜鸟, 对软件开发的认识也很浅显, 这个思维导图也仅仅是现阶段我的看…...

lineageos-19 仓库群遍历,打印第一条git log

lineageos-19 仓库群遍历,打印第一条git log RepoLsRootD/app4/lineage19_oneplus6 LogF/app4/wiki/repo_head_log_ls-lineageos19.1.log rm -v $LogF && \ cd $RepoLsRootD && \ find . -type l -path "*/*.git" -not -path "./.repo/*"…...

详解基于C#开发Windows API的SendMessage方法的鼠标键盘消息发送

在C#中&#xff0c;SendMessage方法是一个强大的工具&#xff0c;它允许我们与Windows API交互&#xff0c;模拟键盘和鼠标事件。本文将详细介绍如何使用SendMessage方法来发送鼠标和键盘消息。 1. SendMessage方法概述 SendMessage是Windows API中的一个函数&#xff0c;它用…...

VMware安装黑苹果后ICLOUD_UNSUPPORTED_DEVICE(不支持的Icloud设备)

修改文件 关闭虚拟机找到虚拟机文件中以.vmx结尾的文件编辑内容&#xff08;补充缺失&#xff09; board-id "Mac-551B86E5744E2388" hw.model.reflectHost "FALSE" hw.model "MacBookPro14,3" serialNumber.reflectHost "FALSE"…...

Python | Leetcode Python题解之第542题01矩阵

题目&#xff1a; 题解&#xff1a; class Solution:def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:m, n len(matrix), len(matrix[0])# 初始化动态规划的数组&#xff0c;所有的距离值都设置为一个很大的数dist [[10**9] * n for _ in range(m)]…...

【计算机网络】【传输层】【习题】

计算机网络-传输层-习题 文章目录 10. 图 5-29 给出了 TCP 连接建立的三次握手与连接释放的四次握手过程。根据 TCP 协议的工作原理&#xff0c;请填写图 5-29 中 ①~⑧ 位置的序号值。答案技巧 注&#xff1a;本文基于《计算机网络》&#xff08;第5版&#xff09;吴功宜、吴英…...

【LeetCode】【算法】55. 跳跃游戏

LeetCode 99 - 55. 跳跃游戏 题目 给你一个非负整数数组 nums &#xff0c;你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标&#xff0c;如果可以&#xff0c;返回true&#xff1b;否则&#xff0c;返回 …...

华为:hcia综合实验

一、拓扑图 二、实验要求 1. pc地址请自行规划&#xff0c;vlan已给出 2. 服务器地址自行规划&#xff0c;vlan&#xff0c;网段已给出 3. 交换机互联链路捆绑保证冗余性 4. 内网pc网关集中于核心交换机&#xff0c;交换机vlan 40互联路由器 ,地址网段已给出 5.配置静态路由实…...

MyBatis与MyBatis-Plus(基础)

MyBatis-Plus的优势 在 Spring Data JPA 已经很方便的情况下&#xff0c;有时仍然选择使用 MyBatis-Plus 的核心原因主要有以下三点&#xff1a; 1. 复杂 SQL 控制能力更强 MyBatis-Plus 允许直接编写和优化 SQL&#xff0c;适合复杂查询、精细化 SQL 控制的场景。特别是在性…...

一文总结java语法规则

1. 题记 Java是一门拥有较强语法规则的编程语言&#xff0c;本博文主要总结介绍java语言的java语法规则。 2. java语法规则 2.1 标识符&#xff08;Identifiers&#xff09; 定义&#xff1a;标识符是用来给变量、类、方法、接口等命名的字符序列。规则&#xff1a; –标识…...

使用 npm 安装 Yarn

PS E:\WeChat Files\wxid_fipwhzebc1yh22\FileStorage\File\2024-11\spid-admin\spid-admin> yarn install yarn : 无法将“yarn”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写&#xff0c;如果包括路径&#xff0c;请确保路径正确&#xff0c;然后…...

vue3中利用路由信息渲染菜单栏

1. 创建路由时将路由信息对象进行抽离 将路由信息对象单独抽离到router/routes.ts文件 关键&#xff1a;利用路由元信息meta&#xff0c;定义3个属性 hidden&#xff1a;控制当前路由是否显示在菜单栏中title&#xff1a;菜单拦名称icon&#xff1a;对应菜单名称前面的图标 …...

Mysql每日一题(行程与用户,困难※)

今天给大家分享一个截止到目前位置&#xff0c;我遇到最难的一道mysql题目&#xff0c;非常建议大家亲手做一遍 完整代码如下&#xff0c;这道题的主要难点是它有两个外键&#xff0c;以前没遇到过&#xff0c;我也没当回事&#xff0c;分享一下错误经验哈 当时我写的where判断…...

adb 命令 查找启动的包名以及导出安装包

查看安卓内包名 adb 查看所有安装的包 adb shell pm list packages查看安装的第三方app的包名 adb shell pm list packages -3查看启动的app的包名 adb shell dumpsys activity top | find "ACTIVITY"adb shell dumpsys activity activities | findstr "Run…...

Flink_DataStreamAPI_输出算子Sink

Flink_DataStreamAPI_输出算子Sink 1连接到外部系统2输出到文件3输出到Kafka4输出到MySQL&#xff08;JDBC&#xff09;5自定义Sink输出 Flink作为数据处理框架&#xff0c;最终还是要把计算处理的结果写入外部存储&#xff0c;为外部应用提供支持。 1连接到外部系统 Flink的D…...

标准C++ 字符串

一、标准库中的字符串类型 在C中&#xff0c;字符串是一个非常重要的数据类型&#xff0c;用于表示和处理文本信息。C提供了多种方式来处理字符串&#xff0c;每种方式都有其特点和适用场景。以下是几种常见的字符串类型及其用法&#xff1a; 1. C 风格字符串 (char* 或 char…...

时序预测:多头注意力+宽度学习

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...