当前位置: 首页 > news >正文

Kubernetes-ArgoCD篇-01-简介

1、什么是Argo CD

Argo CD 是针对 Kubernetes 的声明式 GitOps 持续交付工具。
请添加图片描述

Argo CD官方文档地址:https://argo-cd.readthedocs.io
Argo CD源码地址:https://github.com/argoproj/argo-cd

1.1 关于Argo

Argo是一个开源的项目,主要是扩展Kubernetes的原生功能,更好地把应用运行在Kubernetes平台。
Github地址:https://github.com/argoproj

目前Argo包含多个子项目:

  • Argo Workflows:基于容器的任务编排工具,但是十分十分通用,
  • Argo CD:基于GitOps声明的持续交付工具,今天的主角
  • Argo Events:事件驱动工具。
  • Argo Rollouts:支持金丝雀以及蓝绿发布的应用渐进式发布工具。

1.2 Argo CD简介

Argo CD 被实现为 Kubernetes 控制器,它持续监控正在运行的应用程序并将当前的实时状态与所需的目标状态(如 Git 存储库中指定)进行比较。

已部署的应用程序的实时状态与目标状态有偏差,则被视为已部署应用程序OutOfSync。Argo CD 报告并可视化差异,同时提供将实时状态自动或手动同步回所需目标状态的功能。

对 Git 存储库中所需目标状态所做的任何修改都可以自动应用并反映在指定的目标环境中。

1.3 Argo CD

请添加图片描述

  • 声明式管理:Argo CD 采用声明式的管理方式,开发者只需在 Git 仓库中定义好应用的期望状态,Argo CD
    就会自动将集群的实际状态与之同步。这样可以减少人为错误,并使配置管理更加清晰和可审计。
  • GitOps 工作流:Argo CD 将 Git 仓库作为配置管理的唯一真理来源(Source of Truth),实现了 GitOps
    的最佳实践。每一次应用的部署或更新都通过提交代码和合并请求触发,从而保证了自动化和审核跟踪。
  • 持续同步和自愈:Argo CD 能够持续监控 Kubernetes 集群中的资源状态,并在检测到任何偏离期望状态的情况时自动纠正,使集群的状态始终与
    Git 仓库中的配置一致。
  • 多集群支持:Argo CD 可以管理多个 Kubernetes 集群,使得跨集群的应用部署和管理更加容易。
  • 细粒度访问控制:Argo CD 提供了细粒度的访问控制机制,允许基于角色的访问控制(RBAC)以及通过 SSO 集成来控制对特定项目和应用的访问权限。

1.4 Argo CD 与 Jenkins 的对比

功能Argo CDjenkins
架构专注于 Kubernetes 集群的声明式部署通用的 CI/CD 工具,支持多种编程语言和环境
GitOps 支持内置支持 GitOps 工作流,Git 是唯一的真理来源需要通过插件或自定义脚本来支持 GitOps 工作流
部署自动化自动同步 Kubernetes 资源配置,持续保持集群一致性通过流水线(pipeline)手动配置部署过程
可观测性和回滚内置监控和自动回滚功能通过第三方工具或插件实现
插件支持提供基础功能,无需大量插件通过插件扩展功能,插件种类丰富
CI/CD 整合专注于 CD 部分,通常与 Argo Workflows 等其他工具整合使用既支持 CI 又支持 CD,整合度较高

相关文章:

Kubernetes-ArgoCD篇-01-简介

1、什么是Argo CD Argo CD 是针对 Kubernetes 的声明式 GitOps 持续交付工具。 Argo CD官方文档地址:https://argo-cd.readthedocs.io Argo CD源码地址:https://github.com/argoproj/argo-cd 1.1 关于Argo Argo是一个开源的项目,主要是扩…...

阿里云通义大模型团队开源Qwen2.5-Coder:AI编程新纪元

🚀 11月12日,阿里云通义大模型团队宣布开源通义千问代码模型全系列,共6款Qwen2.5-Coder模型。这些模型在同等尺寸下均取得了业界最佳效果,其中32B尺寸的旗舰代码模型在十余项基准评测中均取得开源最佳成绩,成为全球最强…...

【大数据学习 | HBASE高级】hbase的参数优化

Zookeeper 会话超时时间 属性:zookeeper.session.timeout 解释:默认值为 90000 毫秒(90s) hbase.client.pause(默认值 100ms)重试间隔 hbase.client.retries.number(默认 15 次)重试…...

两个链表求并集、交集、差集

两个链表求并集、交集、差集 两个链表求并集、交集、差集其实都是创建一个新链表然后遍历插入的题型,所以下边就举并集一个例子。 首先将l1里的所有节点遍历存储到新节点l中开始遍历l2,如果l中不存在l2中的节点就将其尾插到l中 下面是两个链表求并集、交集、差集的代…...

C++中的栈(Stack)和堆(Heap)

在C中,堆(heap)和栈(stack)是两种用于存储数据的内存区域。理解它们的原理和区别,对于优化代码性能和确保代码的安全性至关重要。以下是对C中堆栈的详细解析,包括它们的分配方式、优缺点、应用场…...

Linux系统编程学习 NO.11——进程的概念(2)

谈谈进程的性质 进程的竞争性 由于CPU资源是稀缺的,进程数量是众多的。不可避免需要造成进程排队等待CPU资源的动作,内核的设计者为了让操作系统合理的去调度这这些进程,就产生了进程优先级的概念。设置合理的进程优先级能让不同进程公平的去竞争CPU资…...

QT自定义控件封装

QT自定义控件封装 1.概述 这篇文章介绍如何创建UI文件,通过自定义方式将两个控件联动起来,实现自定义功能。 2.创建UI文件 新建一个widget的普通项目,然后在项目名称上右键选择And New... 新建文件,然后选择QT 再选择Qt Desig…...

【搜索结构】AVL树的学习与实现

目录 什么是AVL树 AVL树的定义 插入函数的实现 左单旋和右单旋 左右双旋与右左双旋 什么是AVL树 AVL树实际上就是二叉搜索树的一种变体,我们都知道二i叉搜索树可以将查找的时间复杂度提升到O(logn),极大提升搜索效率。但是在极端情况下,当…...

LeetCode40:组合总和II

原题地址:. - 力扣(LeetCode) 题目描述 给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff…...

基于Python+Vue开发的旅游景区管理系统

项目简介 该项目是基于PythonVue开发的旅游景区管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的旅游景…...

嵌入式硬件杂谈(一)-推挽 开漏 高阻态 上拉电阻

引言:对于嵌入式硬件这个庞大的知识体系而言,太多离散的知识点很容易疏漏,因此对于这些容易忘记甚至不明白的知识点做成一个梳理,供大家参考以及学习,本文主要针对推挽、开漏、高阻态、上拉电阻这些知识点的学习。 目…...

在arm64架构下, Ubuntu 18.04.5 LTS 用命令安装和卸载qt4、qt5

问题:需要在 arm64下安装Qt,QT源码编译失败以后,选择在线安装! 最后安装的版本是Qt5.9.5 和QtCreator 4.5.2 。 一、ubuntu安装qt4的命令(亲测有效): sudo add-apt-repository ppa:rock-core/qt4 sudo apt updat…...

k8s笔记——核心概念

什么是K8s Kubernetes 也称为 K8s,是用于自动部署、扩缩和管理容器化应用程序的开源系统。 Kubernetes 最初是由 Google 工程师作为 Borg 项目开发和设计的,后于 2015 年捐赠给 云原生计算基金会(CNCF)。 什么是 Kubernetes 集群…...

大数据新视界 -- 大数据大厂之 Impala 性能飞跃:动态分区调整的策略与方法(上)(21 / 30)

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-tool usage入门-并行调用多个tools(五)

一、前言 Qwen-Agent 是一个利用开源语言模型Qwen的工具使用、规划和记忆功能的框架。其模块化设计允许开发人员创建具有特定功能的定制代理,为各种应用程序提供了坚实的基础。同时,开发者可以利用 Qwen-Agent 的原子组件构建智能代理,以理解和响应用户查询。 本篇将介绍如何…...

蓝桥杯每日真题 - 第8天

题目:(子2023) 题目描述(14届 C&C B组A题) 解题思路: 该代码通过动态计算包含数字 "2023" 的子序列出现次数。主要思路是: 拼接序列:将1到2023的所有数字按顺序拆分…...

论云游戏的性能与性价比,ToDesk、青椒云、顺网云游戏等具体实操看这篇就够了

文章目录 一、前言二、云电脑产品基础介绍2.1 ToDesk云电脑2.1.1 ToDesk云电脑硬件参数2.1.2 ToDesk云电脑鲁大师跑分2.1.3 ToDesk云电脑收费方式2.1.4 ToDesk云电脑特色功能 2.2 青椒云2.2.1 青椒云游戏娱乐硬件配置2.2.2 青椒云云电脑鲁大师跑分2.2.3 青椒云收费方式2.2.4 青…...

Jmeter中的定时器(二)

5--JSR223 Timmer 功能特点 自定义延迟逻辑:使用脚本语言动态计算请求之间的延迟时间。灵活控制:可以根据测试数据和条件动态调整延迟时间。支持多种脚本语言:支持 Groovy、JavaScript、BeanShell 等多种脚本语言。 支持的脚本语言 Groov…...

华为HCIP-openEuler考试内容大纲:备考必看!

华为HCIP-openEuler认证考试作为ICT领域的一项重要技术认证,已经成为越来越多IT从业者追求的目标。无论你是想提升自己的技术能力,还是为了未来的职业发展,HCIP-openEuler都是一个极具价值的认证。那么,如何高效备考,顺…...

Vector 深度复制记录

有的时候数据得复制过去 有个疑问,自动分配内存吗? 不是估计有变化, 得在看看 指针作为值复制了 … … 挺好,修改原有的值 x86 的 SIM 程序 还有点问题 ; 无法直接绕过硬件错误 。。。 x86 gdb 没有问题 就是运行出现了问题,怎么解决;正常初始化没有问题…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...