当前位置: 首页 > news >正文

【大数据学习 | HBASE】hbase的读数据流程与hbase读取数据

1. hbase的读数据流程

在解析读取流程之前我们还需要知道两个功能性的组件和HFIle的格式信息

HFILE

存储在hdfs中的hbase文件,这个文件中会存在hbase中的数据以kv类型显示,同时还会存在hbase的元数据信息,包括整个hfile文件的索引大小,描述,k和v的均匀长度,文件中包含的开始的key和结束的key,以及中位数key,等信息便于检索,以及布隆过滤器等信息,这个数据在我们hbase进行查询读取的时候按照64KB为一个大小进行读取内容数据,其中读取的元数据会全部加载,但是kv类型的真正存储数据会按照64KB为最小单位读取进来

# flush表的数据,清空memstore
flush <table>
# 查看命令为
hbase hfile -m -b -p -f <hfile的文件路径>
-m 打印元数据信息
-b 打印块信息
-p 打印数据内容
-f 后面接文件

例子:hfile的文件路径:

查看某一列的数据信息:

布隆过滤器:

一个使用hash表作为计算规则的过滤器,也就是在写入数据到hbase的时候要先将数据写出到memstore中,在memstore写满了以后就会将数据以storeFile形式写出到磁盘上,这个时候也会生成一份对应数据的hash表文件以metablock的形式存储到起来,它的功能非常实用,比如我们在查询数据的时候就可以首先将这个数据进行hash处理,然后和hash表进行比对,如果不存在可以直接避免扫描这个storeFile文件。在巨大的数据面前可以进行高效的数据。

一句话:查询数据的时候将对其进行哈希处理,然后与哈希地图进行比对,如果哈希表取到的值为空,说明storeFile没有该要查询的数据,如果哈希表找到的值不为空,也不一定存在要查询的数据。

blockCache

对应表数据的regionserver级别的缓存组件,主要使用规则就是在查询数据的时候也会将查询结果缓存到regionserver对应的blockCache组件中下次查询的时候可以直接使用上次查询的结果,blockCache中存储的数据内存包含索引文件布隆过滤器的值和数据的key,其他的value数据,会以64Kb为大小进行存储,如果数据过期了先清理value的数据,而索引等数据和元数据信息不会清理出去。

blockCache是regionserver级别的缓存组件,我的hbase集群只有两个工作节点,即存在两个regionserver,每个regionserver都存在一个blockCache,所以我desc info表会出现两条记录。

所以hbase的读写数据流程为:

读取数据流程

  • 首先读取zookeeper中的元数据meta表的信息
  • 其次根据meta表的信息找寻相应的region获取元数据信息
  • 然后将meta表的元数据信息放入到自己的客户端缓存中
  • 根据meta表的信息找寻student表对应的region所在的regionserver
  • 然后根据查询的内容先去memstore文件中找寻数据
  • 如果没有再去blockcache缓存中找寻数据,但是并不是直接将数据返回,而是通过key和索引文件去storeFile中查询比对,不然会出现数据过期问题
  • 都没有再从storeFile和hfile中找寻数据,这个过程会使用到布隆过滤器
  • 然后在将数据存储到blockcache中然后在返回给客户端

2. hbase读取数据

在hainiu命名空间创建student表:

hbase:007:0> put 'hainiu:student','001','cf1:name','1'
Took 0.0828 seconds                                                                                            
hbase:008:0> put 'hainiu:student','002','cf1:name','2'
Took 0.0173 seconds                                                                                            
hbase:009:0> put 'hainiu:student','001','cf1:age','10'
Took 0.0267 seconds                                                                                            
hbase:010:0> put 'hainiu:student','002','cf1:age','20'
Took 2.0660 seconds                                                                                            
hbase:011:0> scan 'hainiu:student'
ROW                          COLUMN+CELL                                                                       001                         column=cf1:age, timestamp=2024-11-11T19:15:07.044, value=10                       001                         column=cf1:name, timestamp=2024-11-11T19:14:40.544, value=1                       002                         column=cf1:age, timestamp=2024-11-11T19:15:18.621, value=20                       002                         column=cf1:name, timestamp=2024-11-11T19:14:54.939, value=2                       
2 row(s)
Took 0.1542 seconds                                                                                            
hbase:012:0> put 'hainiu:student','001','cf2:adress','beijin'
Took 0.0695 seconds                                                                                            
hbase:013:0> put 'hainiu:student','002','cf2:adress','beijin'
Took 0.0147 seconds                                                                                            
hbase:014:0> scan 'hainiu:student'
ROW                          COLUMN+CELL                                                                       001                         column=cf1:age, timestamp=2024-11-11T19:15:07.044, value=10                       001                         column=cf1:name, timestamp=2024-11-11T19:14:40.544, value=1                       001                         column=cf2:adress, timestamp=2024-11-11T19:15:52.033, value=beijin                002                         column=cf1:age, timestamp=2024-11-11T19:15:18.621, value=20                       002                         column=cf1:name, timestamp=2024-11-11T19:14:54.939, value=2                       002                         column=cf2:adress, timestamp=2024-11-11T19:16:03.664, value=beijin                
2 row(s)
Took 0.0241 seconds                                       
# get 获取一个内容按照rowkey查询数据
get 'hainiu:student','001'
# get 获取对应列族的数据
get 'hainiu:student','001','cf1'
# get 获取对应列的信息
get 'hainiu:student','001','cf1:name'
hbase:017:0> get 'hainiu:student','001'
COLUMN                       CELL                                                                              cf1:age                     timestamp=2024-11-11T19:15:07.044, value=10                                       cf1:name                    timestamp=2024-11-11T19:14:40.544, value=1                                        cf2:adress                  timestamp=2024-11-11T19:15:52.033, value=beijin                                   
1 row(s)hbase:019:0> get 'hainiu:student','001','cf1'
COLUMN                       CELL                                                                              cf1:age                     timestamp=2024-11-11T19:15:07.044, value=10                                       cf1:name                    timestamp=2024-11-11T19:14:40.544, value=1                                        
1 row(s)
Took 0.0321 seconds                                                                                            
hbase:020:0> get 'hainiu:student','001','cf1:name'
COLUMN                       CELL                                                                              cf1:name                    timestamp=2024-11-11T19:14:40.544, value=1                                        
1 row(s)
Took 0.0231 seconds    
# scan扫描表的数据
scan table
# 扫描limit
scan 'hainiu:student', {LIMIT => 2}
# 扫描指定的列族
scan 'hainiu:student',{COLUMNS=>'cf1'}
# 扫描指定的列
scan 'hainiu:student',{COLUMNS=>'cf1:age'}
hbase:022:0> scan 'hainiu:student',{COLUMN=>'cf1'}
ROW                          COLUMN+CELL                                                                       001                         column=cf1:age, timestamp=2024-11-11T19:15:07.044, value=10                       001                         column=cf1:name, timestamp=2024-11-11T19:14:40.544, value=1                       002                         column=cf1:age, timestamp=2024-11-11T19:15:18.621, value=20                       002                         column=cf1:name, timestamp=2024-11-11T19:14:54.939, value=2                       
2 row(s)
Took 0.0588 seconds                                                                                            
hbase:023:0> scan 'hainiu:student',{COLUMN=>'cf1:age'}
ROW                          COLUMN+CELL                                                                       001                         column=cf1:age, timestamp=2024-11-11T19:15:07.044, value=10                       002                         column=cf1:age, timestamp=2024-11-11T19:15:18.621, value=20                       
2 row(s)
# 过滤器查询
scan 'hainiu:student', FILTER=>"ValueFilter(=,'binary:20')"
# 指定列等值查询
scan 'hainiu:student',{COLUMNS=>'cf1:age',FILTER=>"ValueFilter(!=,'binary:20')"}
# 范围查询
scan 'hainiu:student', { STARTROW => '001', STOPROW => '003'}
# 分页查询
scan 'hainiu:student', {COLUMNS => 'cf1', LIMIT => 2, STARTROW => '001'}
# 范围查询指定相应的列信息
scan 'hainiu:student', { STARTROW => '001', STOPROW => '002', COLUMN => 'cf1:name'}

在范围查询中,从rowKey的[STARTROW, STOPROW)为范围查询,左闭右开区间,包含STARTROW,但不包含STOPROW。

行数查询

# 查询表的行数
# 语法:count <table>, {INTERVAL => intervalNum, CACHE => cacheNum}
# INTERVAL设置多少行显示一次及对应的rowkey,默认1000;
# CACHE每次去取的缓存区大小,默认是10,调整该参数可提高查询速度
count 'hainiu:student'
# 直接查询完毕返回值
count 'hainiu:student', {INTERVAL => 2,CACHE=>50} 
# 间隔两秒返回一次结果值

每间隔50秒,一次性取50行ky。

大表统计

# 大表统计的时候不能使用hbase自带的count命令,这样hbase压力太大
# 我们可以通过外置的mr进行计算统计大小
hbase org.apache.hadoop.hbase.mapreduce.RowCounter 'tablename'  

多版本查询

#修改设置版本,查询时,加上版本就可以查出来版本
alter 'hainiu:student',{ NAME =>'cf1', VERSIONS => 2 }put 'hainiu:student','id10', 'cf1:name','name10a'
put 'hainiu:student','id10', 'cf1:name','name10aa'
put 'hainiu:student','id10', 'cf1:name','name10aaa'#此时,可以查询出2个版本的数据
get 'hainiu:student', 'id10', { COLUMN =>'cf1:name',  VERSIONS => 2}

相关文章:

【大数据学习 | HBASE】hbase的读数据流程与hbase读取数据

1. hbase的读数据流程 在解析读取流程之前我们还需要知道两个功能性的组件和HFIle的格式信息 HFILE 存储在hdfs中的hbase文件&#xff0c;这个文件中会存在hbase中的数据以kv类型显示&#xff0c;同时还会存在hbase的元数据信息&#xff0c;包括整个hfile文件的索引大小&…...

A027-基于Spring Boot的农事管理系统

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600…...

Redisson的可重入锁

初始状态&#xff1a; 表示系统或资源在没有线程持有锁的情况下的状态&#xff0c;任何线程都可以尝试获取锁。 线程 1 获得锁&#xff1a; 线程 1 首次获取了锁并进入受保护的代码区域。 线程 1 再次请求锁&#xff1a; 在持有锁的情况下&#xff0c;线程 1 再次请求锁&a…...

SQL Server Service Broker完整示例

目录 准备 创建Message&#xff0c;Contract&#xff0c;Queue和Service 创建调用存储过程 启用SQL Agent并创建Job执行存储过程 调用demo 常见故障排除 准备 判断你的数据库YourDatabaseName是否启用了Service Broker SELECT is_broker_enabled FROM sys.databases WH…...

CentOS7 升级OpenSSH9.0全过程和坑

近日,漏洞肆虐,需要升级新版本,才能解决漏洞。故有此文: 0 查看当前版本 [root@host-testsvc openssh-9.0p1]# ssh -V OpenSSH_7.4p1, OpenSSL 1.0.2k-fips 26 Jan 20171、在data下新建一个独立目录openssh目录,用来存放软件 [root@host-testsvc data]# mkdir openssh…...

RSTP的配置

RSTP相对于STP在端口角色、端口状态、配置BPDU格式、配置BPDU的处理方式、快速收敛机制、拓扑变更机制和4种保护特性方面的详细改进说明&#xff1a; 端口角色&#xff1a; STP中定义了三种端口角色&#xff1a;根端口&#xff08;Root Port&#xff09;、指定端口&#xff0…...

力扣257:二叉树的所有路径

给你一个二叉树的根节点 root &#xff0c;按 任意顺序 &#xff0c;返回所有从根节点到叶子节点的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [1,2,3,null,5] 输出&#xff1a;["1->2->5","1->3"]示例…...

Tcl 和 Python 在二次开发研究

引言 Tcl(Tool Command Language)和 Python 都是广泛应用于各种领域的编程语言,特别是在二次开发和自动化开发方面,两者有着独特的特性。Tcl 是一种动态的脚本语言,早期主要用于集成和控制其他程序,因此它经常出现在嵌入式应用和图形用户界面(GUI)开发中。而 Python 是…...

【NLP优化】Ubuntu 20.04 下 源码安装 CasADi + Ipopt / acados

20241114 记录一下 Ubuntu 20.04 下安装 MPC 中两种常用开源 NLP 优化器 CasADi + Ipopt / acados 可以新建一个文件夹,保存所有源码安装下载的代码 mkdir ~/mpc_dep1. 安装依赖 # **IPOPT** sudo apt-get install gcc g++ gfortran git patch wget pkg-config libmetis-de…...

[241110] 微软发布多智能体系统Magentic-One | 社区讨论:Ubuntu 26.04 LTS 发布前移除 Qt 5

目录 微软发布多智能体系统 Magentic-One社区讨论&#xff1a;Ubuntu 26.04 LTS 发布前移除 Qt 5 微软发布多智能体系统 Magentic-One 微软研究院近日发布了一个名为 Magentic-One 的多智能体系统&#xff0c;旨在解决复杂的现实世界任务。这个系统展现了令人兴奋的潜力&#…...

AI风向标|算力与通信的完美融合,SRM6690解锁端侧AI的智能密码

当前&#xff0c;5G技术已经成为推动数字经济和实体经济深度融合的关键驱动力&#xff0c;进入5G发展的下半场&#xff0c;5G与AI的融合正推动诸多行业的数字化转型和创新发展&#xff0c;终端侧AI和端云混合式AI将广泛应用于各类消费终端和各行各业。 在推动5G和AI与各行业场…...

MySQL查询执行(六):join查询

到底可不可以使用join 假设存在如下表结构&#xff1a; -- 创建表t2 CREATE TABLE t2 (id int(11) NOT NULL,a int(11) DEFAULT NULL,b int(11) DEFAULT NULL,PRIMARY KEY (id),KEY a (a) ) ENGINEInnoDB;-- 向t2写入1000条数据 drop procedure idata; delimiter ;; create pr…...

python习题练习

python习题 编写一个简单的工资管理程序系统可以管理以下四类人:工人(worker)、销售员(salesman)、经理(manager)、销售经理(salemanger)所有的员工都具有员工号&#xff0c;工资等属性&#xff0c;有设置姓名&#xff0c;获取姓名&#xff0c;获取员工号&#xff0c;计算工资等…...

MySQL高级(二):一条更新语句是如何执行的

执行步骤 1. 解析 SQL 语句 MySQL 首先会解析你输入的 UPDATE 语句。解析器会检查语法是否正确&#xff0c;并将 SQL 语句转化为内部的数据结构&#xff08;通常是语法树&#xff09;。 示例 SQL 语句&#xff1a; UPDATE employees SET salary 5000 WHERE department Sa…...

在 Ubuntu 18.04 中搭建和测试 DNS 服务器

在 Ubuntu 18.04 中搭建和测试 DNS 服务器可以通过安装和配置 BIND&#xff08;Berkeley Internet Name Domain&#xff09;来实现。以下是详细的步骤&#xff1a; 1. 安装 BIND 打开终端并运行以下命令来安装 BIND&#xff1a; sudo apt update sudo apt install bind9 bin…...

算法学习第一弹——C++基础

早上好啊&#xff0c;大佬们。来看看咱们这回学点啥&#xff0c;在前不久刚出完C语言写的PTA中L1的题目&#xff0c;想必大家都不过瘾&#xff0c;感觉那些题都不过如此&#xff0c;所以&#xff0c;为了我们能更好的去处理更难的题目&#xff0c;小白兔决定奋发图强&#xff0…...

javaWeb小白项目--学生宿舍管理系统

目录 一、检查并关闭占用端口的进程 二、修改 Tomcat 的端口配置 三、重新启动 Tomcat 一、javaw.exe的作用 二、结束javaw.exe任务的影响 三、如何判断是否可以结束 结尾&#xff1a; 这个错误提示表明在本地启动 Tomcat v9.0 服务器时遇到了问题&#xff0c;原因是所需…...

如何优化Elasticsearch的查询性能?

优化Elasticsearch查询性能可以从以下几个方面进行&#xff1a; 合理设计索引和分片&#xff1a; 确保设置合理的分片和副本数&#xff0c;考虑数据量、节点数和集群大小。根据数据量和节点数量调整分片数量&#xff0c;避免使用过多分片&#xff0c;因为每个分片都需要额外的…...

蓝桥杯每日真题 - 第12天

题目&#xff1a;&#xff08;数三角&#xff09; 题目描述&#xff08;14届 C&C B组E题&#xff09; 解题思路&#xff1a; 给定 n 个点的坐标&#xff0c;计算其中可以组成 等腰三角形 的三点组合数量。 核心条件&#xff1a;等腰三角形的定义是三角形的三条边中至少有…...

从H264视频中获取宽、高、帧率、比特率等属性信息

背景 最近整理视频编解码的代码&#xff0c;早前在jetson上封装了jetson multimedia作为视频编解码的类&#xff0c;供其他同事和其他组使用&#xff0c;但该解码接口有一个问题&#xff0c;无法首先获取视频宽高信息&#xff0c;更无法直接获取视频的帧率、比特率等信息。 解…...

Cyberchef配合Wireshark提取并解析TCP/FTP流量数据包中的文件

前一篇文章中讲述了如何使用cyberchef提取HTTP/TLS数据包中的文件,详见《Cyberchef配合Wireshark提取并解析HTTP/TLS流量数据包中的文件》,链接这里,本文讲述下如何使用cyberchef提取FTP/TCP数据包中的文件。 FTP 是最为常见的文件传输协议,和HTTP协议不同的是FTP协议传输…...

Nginx中使用keepalive实现保持上游长连接实现提高吞吐量示例与测试

场景 HTTP1 .1之后协议支持持久连接&#xff0c;也就是长连接&#xff0c;优点在于在一个TCP连接上可以传送多个HTTP请求和响应&#xff0c; 减少了建立和关闭连接的消耗和延迟。 如果我们使用了nginx去作为反向代理或者负载均衡&#xff0c;从客户端过来的长连接请求就会被…...

深度学习-卷积神经网络CNN

案例-图像分类 网络结构: 卷积BN激活池化 数据集介绍 CIFAR-10数据集5万张训练图像、1万张测试图像、10个类别、每个类别有6k个图像&#xff0c;图像大小32323。下图列举了10个类&#xff0c;每一类随机展示了10张图片&#xff1a; 特征图计算 在卷积层和池化层结束后, 将特征…...

241114.学习日志——[CSDIY] [Cpp]零基础速成 [03]

​ CSDIY&#xff1a;这是一个非科班学生的努力之路&#xff0c;从今天开始这个系列会长期更新&#xff0c;&#xff08;最好做到日更&#xff09;&#xff0c;我会慢慢把自己目前对CS的努力逐一上传&#xff0c;帮助那些和我一样有着梦想的玩家取得胜利&#xff01;&#xff0…...

大模型研究报告 | 2024年中国金融大模型产业发展洞察报告|附34页PDF文件下载

随着生成算法、预训练模型、多模态数据分析等AI技术的聚集融合&#xff0c;AIGC技术的实践效用迎来了行业级大爆发。通用大模型技术的成熟推动了新一轮行业生产力变革&#xff0c;在投入提升与政策扶植的双重作用下&#xff0c;以大模型技术为底座、结合专业化金融能力的金融大…...

数据库SQL——什么是实体-联系模型(E-R模型)?

目录 什么是实体-联系模型&#xff1f; 1.实体集 2.联系集 3.映射基数 一对一&#xff08;1:1&#xff09; 一对多&#xff08;1:n&#xff09; 多对一&#xff08;n:1&#xff09; 多对多&#xff08;m:n&#xff09; 全部参与&#xff1a; 4.主码 弱实体集&#xf…...

在 MySQL 8.0 中,SSL 解密失败,在使用 SSL 加密连接时出现了问题

在 MySQL 8.0 中&#xff0c;SSL 解密失败通常指的是在使用 SSL 加密连接时出现了问题&#xff0c;导致无法建立加密通信。这个问题可能由多种原因引起&#xff0c;下面是一些常见的原因和排查方法&#xff1a; 1. 证书配置问题 确保您在 MySQL 配置中使用了正确的 SSL 证书和…...

React Native 全栈开发实战班 - 第四部分:用户界面进阶之动画效果实现

在移动应用中&#xff0c;动画效果 是提升用户体验的重要手段。合理的动画设计可以增强应用的交互性、流畅性和视觉吸引力。React Native 提供了多种实现动画的方式&#xff0c;包括内置的 Animated API、LayoutAnimation 以及第三方库&#xff08;如 react-native-reanimated&…...

【CICD】GitLab Runner 和执行器(Executor

GitLab Runner 和执行器&#xff08;Executor&#xff09;是 GitLab CI/CD 管道中的两个重要组成部分。理解它们之间的关系有助于更好地配置和使用 CI/CD 流水线。runer是gitlab的ci-agent对接gitlab&#xff0c;而执行器是接受runer下发的ci的任务来干活的。也就是说gitrunner…...

实用教程:如何无损修改MP4视频时长

如何在UltraEdit中搜索MP4文件中的“mvhd”关键字 引言 在视频编辑和分析领域&#xff0c;有时我们需要深入到视频文件的底层结构中去。UltraEdit&#xff08;UE&#xff09;和UEStudio作为强大的文本编辑器&#xff0c;允许我们以十六进制模式打开和搜索MP4文件。本文将指导…...