英伟达基于Mistral 7B开发新一代Embedding模型——NV-Embed-v2

我们介绍的 NV-Embed-v2 是一种通用嵌入模型,它在大规模文本嵌入基准(MTEB 基准)(截至 2024 年 8 月 30 日)的 56 项文本嵌入任务中以 72.31 的高分排名第一。此外,它还在检索子类别中排名第一(在 15 项任务中获得 62.65 分),这对 RAG 技术的发展至关重要。
NV-Embed-v2 采用了多项新设计,包括让 LLM 关注潜在向量,以获得更好的池化嵌入输出,并展示了一种两阶段指令调整方法,以提高检索和非检索任务的准确性。此外,NV-Embed-v2 还采用了一种新颖的硬阴性挖掘方法,该方法考虑了正相关性得分,能更好地去除假阴性。
有关更多技术细节,请参阅我们的论文: NV-Embed:将 LLM 训练为通用嵌入模型的改进技术。
型号详情
- 仅用于解码器的基本 LLM:Mistral-7B-v0.1
- 池类型: Latent-Attention
- 嵌入尺寸: 4096
如何使用
所需软件包
如果遇到问题,请尝试安装以下 python 软件包
pip uninstall -y transformer-engine
pip install torch==2.2.0
pip install transformers==4.42.4
pip install flash-attn==2.2.0
pip install sentence-transformers==2.7.0
以下是如何使用 Huggingface-transformer 和 Sentence-transformer 对查询和段落进行编码的示例。
HuggingFace Transformers
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel# Each query needs to be accompanied by an corresponding instruction describing the task.
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
queries = ['are judo throws allowed in wrestling?', 'how to become a radiology technician in michigan?']# No instruction needed for retrieval passages
passage_prefix = ""
passages = ["Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.","Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
]# load model with tokenizer
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True)# get the embeddings
max_length = 32768
query_embeddings = model.encode(queries, instruction=query_prefix, max_length=max_length)
passage_embeddings = model.encode(passages, instruction=passage_prefix, max_length=max_length)# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)# get the embeddings with DataLoader (spliting the datasets into multiple mini-batches)
# batch_size=2
# query_embeddings = model._do_encode(queries, batch_size=batch_size, instruction=query_prefix, max_length=max_length, num_workers=32, return_numpy=True)
# passage_embeddings = model._do_encode(passages, batch_size=batch_size, instruction=passage_prefix, max_length=max_length, num_workers=32, return_numpy=True)scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())
# [[87.42693328857422, 0.46283677220344543], [0.965264618396759, 86.03721618652344]]
Sentence-Transformers
import torch
from sentence_transformers import SentenceTransformer# Each query needs to be accompanied by an corresponding instruction describing the task.
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
queries = ['are judo throws allowed in wrestling?', 'how to become a radiology technician in michigan?']# No instruction needed for retrieval passages
passages = ["Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.","Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
]# load model with tokenizer
model = SentenceTransformer('nvidia/NV-Embed-v2', trust_remote_code=True)
model.max_seq_length = 32768
model.tokenizer.padding_side="right"def add_eos(input_examples):input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]return input_examples# get the embeddings
batch_size = 2
query_embeddings = model.encode(add_eos(queries), batch_size=batch_size, prompt=query_prefix, normalize_embeddings=True)
passage_embeddings = model.encode(add_eos(passages), batch_size=batch_size, normalize_embeddings=True)scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())
MTEB 基准的指令模板
对于检索、STS 和摘要的 MTEB 子任务,请使用 instructions.json 中的指令前缀模板。 对于分类、聚类和重排,请使用 NV-Embed 论文表 7 中提供的说明。 7 中提供的说明。
instructions.json
{"ClimateFEVER":{"query": "Given a claim about climate change, retrieve documents that support or refute the claim","corpus": ""},"HotpotQA":{"query": "Given a multi-hop question, retrieve documents that can help answer the question","corpus": ""},"FEVER":{"query": "Given a claim, retrieve documents that support or refute the claim","corpus": ""},"MSMARCO":{"query": "Given a web search query, retrieve relevant passages that answer the query","corpus": ""},"DBPedia":{"query": "Given a query, retrieve relevant entity descriptions from DBPedia","corpus": ""},"NQ":{"query": "Given a question, retrieve passages that answer the question","corpus": ""},"QuoraRetrieval":{"query": "Given a question, retrieve questions that are semantically equivalent to the given question","corpus": "Given a question, retrieve questions that are semantically equivalent to the given question"},"SCIDOCS":{"query": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper","corpus": ""},"TRECCOVID":{"query": "Given a query on COVID-19, retrieve documents that answer the query","corpus": ""},"Touche2020":{"query": "Given a question, retrieve passages that answer the question","corpus": ""},"SciFact":{"query": "Given a scientific claim, retrieve documents that support or refute the claim","corpus": ""},"NFCorpus":{"query": "Given a question, retrieve relevant documents that answer the question","corpus": ""},"ArguAna":{"query": "Given a claim, retrieve documents that support or refute the claim","corpus": ""},"FiQA2018":{"query": "Given a financial question, retrieve relevant passages that answer the query","corpus": ""},"STS":{"text": "Retrieve semantically similar text"},"SUMM":{"text": "Given a news summary, retrieve other semantically similar summaries"}
}
如何启用多 GPU(注意,这是 HuggingFace Transformers的情况)
from transformers import AutoModel
from torch.nn import DataParallelembedding_model = AutoModel.from_pretrained("nvidia/NV-Embed-v2")
for module_key, module in embedding_model._modules.items():embedding_model._modules[module_key] = DataParallel(module)相关文章:
英伟达基于Mistral 7B开发新一代Embedding模型——NV-Embed-v2
我们介绍的 NV-Embed-v2 是一种通用嵌入模型,它在大规模文本嵌入基准(MTEB 基准)(截至 2024 年 8 月 30 日)的 56 项文本嵌入任务中以 72.31 的高分排名第一。此外,它还在检索子类别中排名第一(…...
HTML面试题(2)
HTML5相比HTML有哪些更新? 语义化更强的HTML元素:引入artitcle、section、nav、header、footer等元素,帮助创建结构更清晰、语义更明确的网页,有利于SEO和内容的可访问性表单控件增强:新增多种表单输入类型࿰…...
微服务day07
MQ高级 发送者可靠性,MQ的可靠性,消费者可靠性。 发送者可靠性 发送者重连 连接重试的配置文件: spring:rabbitmq:connection-timeout: 1s # 设置MQ的连接超时时间template:retry:enabled: true # 开启超时重试机制initial-interval: 10…...
芯原科技嵌入式面试题及参考答案
Linux 相关驱动怎么写? 在 Linux 中编写驱动主要有以下步骤。 首先,需要了解设备的硬件特性。这包括设备的工作原理、寄存器地址和功能、中断号等信息。例如,对于一个简单的 GPIO 设备,要知道其数据寄存器、方向寄存器的位置以及读写操作的规则。 然后是模块的初始化部分。…...
二叉树Golang
二叉树 前言 完全二叉树 最底层节点按顺序从左到右排列。 满二叉树 一颗二叉树只有0度和2度的节点。 二叉搜索树 左子树上的所有节点的值均小于根节点的值。右子树上的所有节点的值均大于根节点的值。 平衡二叉搜索树 左右两个子树的高度差的绝对值不超过1 。 二叉树的存储…...
通过css的哪些方式可以实现隐藏页面上的元素?
1:opacity:0 通过将元素的透明度设置为o,实现隐藏效果,但是依然会占用空间并可以进行交互。 2:visibility:hidden 与透明度度为0的方案类似,会占据空间,但不可以进行交互。 3:Overflow:hi…...
微信小程序 === 使用腾讯地图选点
目录 插件介绍 接入指引 相关参数说明 插件错误处理 效果图 permission 插件的作用 添加插件 引入插件代码包 使用插件 页面 js 接口 插件介绍 腾讯位置服务地图选点插件 可以让用户快速、准确地选择并确认自己的当前位置,并将相关位置信息回传给开发者。…...
Redis高可用-Cluster(集群)
Redis cluster cluster 为无中心,分布式 sharding,高可用技术架构。 在哨兵 sentinel 机制中,可以解决 redis 高可用的问题,即当 master 故障后可以自动将 slave 提升为 master 从而可以保证 redis 服务的正常使用。 但是无法解…...
Spring Boot编程训练系统:数据管理与存储
摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了编程训练系统的开发全过程。通过分析编程训练系统管理的不足,创建了一个计算机管理编程训练系统的方案。文章介绍了编程训练系统的系统分析部分&…...
报告解读 | 创意经济2024:如何在变革中抢占先机?
在科技飞速发展的今天,创意行业正面临前所未有的变化。《Skillshare Trendshare 2024》报告揭示了多项趋势,为创意人士提供了深刻的洞察和实用的建议。本文将为您详细解读这些趋势,助您在创意领域脱颖而出。 1. 人工智能(AI&…...
Flume1.9.0自定义Sink组件将数据发送至Mysql
需求 1、将Flume采集到的日志数据也同步保存到MySQL中一份,但是Flume目前不支持直接向MySQL中写数据,所以需要用到自定义Sink,自定义一个MysqlSink。 2、日志数据默认在Linux本地的/data/log/user.log日志文件中,使用Flume采集到…...
如何在 Ubuntu 24.04 上安装和配置 Fail2ban ?
确保你的 Ubuntu 24.04 服务器的安全是至关重要的,特别是如果它暴露在互联网上。一个常见的威胁是未经授权的访问尝试,特别是通过 SSH。Fail2ban 是一个强大的工具,可以通过自动阻止可疑活动来帮助保护您的服务器。 在本指南中,我…...
uniapp如何i18n国际化
1、正常情况下项目在代码生成的时候就已经有i18n的相关依赖,如果没有可以自行使用如下命令下载: npm install vue-i18n --save 2、创建相关文件 en文件下: zh文件下: index文件下: 3、在main.js中注册:…...
C++__day1
1、思维导图 2、如果登录失败,提示用户登录失败信息,并且提示错误几次,且重新输入;如果输入错误三次,则退出系统 #include <iostream> using namespace std;int main() {string id , pswd;string user"admi…...
Emacs进阶之插入时间信息(一百六十三)
简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【…...
Java线程池:ThreadPoolExecutor原理解析
一、线程池的基本概念 1.1 线程池的定义 线程池是一组预先创建的线程,这些线程可以重复使用来执行多个任务,避免了频繁创建和销毁线程的开销。线程池的核心思想是通过复用一组工作线程,来处理大量的并发任务,减少系统资源消耗&a…...
二叉树、哈夫曼报文大全
1、泛型链树 #include <iostream> #include<Windows.h> #include<string> #include<stack> #include<queue> using namespace std; void menu() {cout << "**********" << endl;cout << "-1.添加" <&…...
NotePad++中安装XML Tools插件
一、概述 作为开发人员,日常开发中大部的数据是标准的json格式,但是对于一些古老的应用,例如webservice接口,由于其响应结果是xml,那么我们拿到xml格式的数据后,常常会对其进行格式化,以便阅读。…...
聊天服务器(7)数据模块
目录 Mysql数据库代码封装头文件与源文件 Mysql数据库代码封装 业务层代码不要直接写数据库,因为业务层和数据层的代码逻辑也想完全区分开。万一不想存储mysql,想存redis的话,就要改动大量业务代码。解耦合就是改起来很方便。 首先需要安装m…...
VS2022编译32位OpenCV
使用环境 Visual Studio 2022 OpenCV: 4.7.0 cmake: 3.30.2一、使用CMake工具生成vs2022的openCV工程解决方案 打开cmake,选择opencv的源代码目录,创建一个文件夹,作为VS工程文件的生成目录 点击configure构建项目,弹出构建设置…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
