opencv kdtree pcl kdtree 效率对比
由于项目中以一个环节需要使用kdtree ,对性能要求比较严苛,所以看看那个kdtree效率高一些。对比了opencv和pcl。
#include <array>
#include <deque>
#include <fstream>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/flann.hpp>#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>#include <iostream>
#include <iostream>
#include <cstdlib> // 用于 rand()
#include <ctime> // 用于 time()int main() {// 初始化随机种子std::srand(std::time(0));// 生成 5000 个随机的二维点int numPoints = 5000;std::vector<cv::Point2f> points;pcl::PointCloud<pcl::PointXY>::Ptr cloud(new pcl::PointCloud<pcl::PointXY>);// 随机生成点,范围为 (-100, 100)for (int i = 0; i < numPoints; ++i) {float x = static_cast<float>(rand() % 200 - 100); // x 坐标在 [-100, 100] 范围内float y = static_cast<float>(rand() % 200 - 100); // y 坐标在 [-100, 100] 范围内points.push_back(cv::Point2f(x, y));cloud->points.push_back(pcl::PointXY(x, y));}// 2. 将点转换为 cv::Mat 格式cv::Mat pointMat(points.size(), 2, CV_32F); // 每个点是 2D(x, y)for (size_t i = 0; i < points.size(); i++) {pointMat.at<float>(i, 0) = points[i].x; pointMat.at<float>(i, 1) = points[i].y;}// 3. 创建 KD-Tree 索引(使用 FLANN)cv::flann::Index kdtree(pointMat, cv::flann::KDTreeIndexParams(4)); // 4 表示树的分支数// 获取程序开始时的时钟时间std::clock_t start = std::clock();for(int i = 0 ;i < 200; ++i){std::vector<int> indices(1); // 最近邻的索引std::vector<float> dists(1); // 最近邻的距离float x = static_cast<float>(rand() % 200 - 100); // x 坐标在 [-100, 100] 范围内float y = static_cast<float>(rand() % 200 - 100); // y 坐标在 [-100, 100] 范围内cv::Mat query = (cv::Mat_<float>(1, 2) << x, y);kdtree.knnSearch(query, indices, dists, 1, cv::flann::SearchParams(32));// std::cout << "Query point: " << query << std::endl;// std::cout << "Closest point: " << pointMat.row(indices[0]) << std::endl;// std::cout << "Distance: " << dists[0] << std::endl;// std::cout << "----------------" << std::endl;}std::clock_t end = std::clock();// 计算并输出经过的时间,单位是秒double duration = double(end - start) / CLOCKS_PER_SEC;std::cout << "opencv kdtree 搜索时间: " << duration << " 秒" << std::endl;/pcl::KdTreeFLANN<pcl::PointXY> pcl_kdtree;pcl_kdtree.setInputCloud(cloud);start = std::clock();for(int i = 0 ;i < 200; ++i){std::vector<int> indices(1); // 最近邻的索引std::vector<float> dists(1); // 最近邻的距离float x = static_cast<float>(rand() % 200 - 100); // x 坐标在 [-100, 100] 范围内float y = static_cast<float>(rand() % 200 - 100); // y 坐标在 [-100, 100] 范围内pcl::PointXY searchPoint;searchPoint.x = x;searchPoint.y = y;pcl_kdtree.nearestKSearch(searchPoint,1, indices, dists);// std::cout << "Query point: " << query << std::endl;// std::cout << "Closest point: " << pointMat.row(indices[0]) << std::endl;// std::cout << "Distance: " << dists[0] << std::endl;// std::cout << "----------------" << std::endl;}end = std::clock();// 计算并输出经过的时间,单位是秒duration = double(end - start) / CLOCKS_PER_SEC;std::cout << "pcl kdtree 搜索时间: " << duration << " 秒" << std::endl;return 0;
}
CMakeLists.txt
# 设置 CMake 最低版本要求
cmake_minimum_required(VERSION 3.10)# 设置项目名称
project(test_kdtree)# 查找 OpenCV 包
find_package(OpenCV REQUIRED)
find_package(PCL REQUIRED)# 显示 OpenCV 的版本和路径
message(STATUS "OpenCV version: ${OpenCV_VERSION}")
message(STATUS "OpenCV_INCLUDE_DIRS: ${OpenCV_INCLUDE_DIRS}")
message(STATUS "OpenCV_LIBS: ${OpenCV_LIBS}")# 设置源文件
set(SOURCE_FILES test_kdtree.cpp)# 添加可执行文件
add_executable(${PROJECT_NAME} ${SOURCE_FILES})# 链接 OpenCV 库到目标程序
target_link_libraries(${PROJECT_NAME} ${OpenCV_LIBS} ${PCL_LIBRARIES})# 包含 OpenCV 的头文件路径
target_include_directories(${PROJECT_NAME} PRIVATE ${OpenCV_INCLUDE_DIRS})
结果:

相关文章:
opencv kdtree pcl kdtree 效率对比
由于项目中以一个环节需要使用kdtree ,对性能要求比较严苛,所以看看那个kdtree效率高一些。对比了opencv和pcl。 #include <array> #include <deque> #include <fstream> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp…...
1+X应急响应(网络)系统备份:
系统备份: 系统备份概述: 备份种类: 灾难恢复等级划分: 执行一次备份: 创建备份计划: 恢复备份:...
python os.path.dirname(path) 详解
dirname 是一个用于处理文件路径的 Python 函数,通常用于获取给定路径的目录部分。它是 os.path 模块中的一部分。下面是对 dirname 函数的详细解释和使用示例。 1、导入模块 首先,你需要导入 os 模块,因为 dirname 是 os.path 模块的一部分…...
深度解析 Feign
一、引言 在当今微服务架构盛行的时代,众多微服务相互协作构成了复杂的分布式系统。然而,各个微服务之间的调用往往涉及到诸多繁琐的细节,比如网络请求的构建、参数的处理、响应的解析等。为了让开发人员能够更加专注于业务逻辑的实现&#x…...
AI工业大模型报告:体系架构、关键技术与典型应用
研究意义 随着新一代人工智能的发展, 大模型(如 GPT-4o 等)凭借大规模训练数据、网络参数和算 力涌现出强大的生成能力、泛化能力和自然交互能力, 展现出改变工业世界的巨大潜力. 尽管大模型 已在自然语言等多个领域取得突破性进展, 但其在工业应用中的…...
深入理解接口测试:实用指南与最佳实践5.0(五)
✨博客主页: https://blog.csdn.net/m0_63815035?typeblog 💗《博客内容》:.NET、Java.测试开发、Python、Android、Go、Node、Android前端小程序等相关领域知识 📢博客专栏: https://blog.csdn.net/m0_63815035/cat…...
常用List工具类(取交集、并集等等)
支持操作: 根据指定字段,获取两个对象集合的交集、补集、并集等将对象中的多个字段值,抽取到一个List中 import java.lang.reflect.Field; import java.util.*; import java.util.concurrent.ConcurrentHashMap; import java.util.function…...
4 C++ 复合类型:引用和指针
复合类型是指基于其它类型定义的类型。C 有几种复合类型,包括引用、指针。 1 引用 引用(reference)为对象起了另外一个名字,引用类型引用另外一种类型。通过将声明符写成&d的形式来定义引用类型,其中d是声明的变量…...
ABAP关于PS模块CJ20N中项目物料的屏幕和字段增强CI_RSADD
网上搜关于CJ20N的屏幕增强,基本都是关于项目定义(CI_PROJ)、项目WBS(CI_PRPS)、项目网络活动工序(CI_AFVU)的字段与屏幕增强,几乎没有关于项目物料(CI_RSADD)的字段屏幕增强,我在这里做一个分享。 主要逻辑:实现badi增强,并自建一个函数组后创建屏幕,在badi里面调用…...
探索IDE的无限可能:使用技巧与插件推荐
在软件开发的世界里,集成开发环境(IDE)是开发者的得力助手,它不仅提供了代码编辑、编译、调试等功能,还通过各种插件扩展了其功能,使得开发工作更加高效和便捷。本文将带你探索IDE的使用技巧和一些实用的插…...
自动化生成测试用例:利用OpenAI提升电商网站测试覆盖率
导语 自动化生成测试用例是软件测试领域一个强大的应用,通过OpenAI的语言模型,测试工程师可以快速生成高质量的测试用例,尤其是在处理边界条件和极端情况时,提升测试覆盖率。本篇文章将结合一个典型的电商网站案例,介绍…...
时间序列关于可解释性值得关注的论文汇总-第2篇
前言 这是时序可解释性论文汇总的第二篇,第一篇见这里(后台回复:“论文合集”可直接获取整理的文章)。深度学习的可解释性研究一直是热门,而时间序列的可解释性同样非常重要。这是因为时序模型被大量应用到特定领域&a…...
Vulnhub:DC-4靶机渗透——土豆片的靶机渗透练习
攻击机:kali 靶机:DC-4 一,信息收集 1.主机发现 找寻同网段下存活的主机 arp-scan -l2.端口扫描 查看此主机上有哪些开放端口 nmap -sV -p- 192.168.126.136发现22,80端口,远程连接跟网站(大概&…...
【云原生系列--Longhorn的部署】
Longhorn部署手册 1.部署longhorn longhorn架构图: 1.1部署环境要求 kubernetes版本要大于v1.21 每个节点都必须装open-iscsi ,Longhorn依赖于 iscsiadm主机为 Kubernetes 提供持久卷。 apt-get install -y open-iscsiRWX 支持要求每个节点都安装 N…...
Java集合(Collection+Map)
Java集合(CollectionMap) 为什么要使用集合?泛型 <>集合框架单列集合CollectionCollection遍历方式List:有序、可重复、有索引ArrayListLinkedListVector(已经淘汰,不会再用) Set…...
微信小程序02-页面制作
微信小程序页面制作指南 目录 微信小程序页面制作 1. 个人信息展示小程序 案例分析 需求背景:许多大学生毕业后需要求职,因此制作一个展示个人信息的微信小程序对招聘人员快速了解求职者非常有帮助。页面布局:页面分为头像区域和详细信息…...
zabbix监控端界面时间与服务器时间不对应
1. 修改系统时间 # tzselect Please select a continent, ocean, "coord", or "TZ".1) Africa2) Americas3) Antarctica4) Asia5) Atlantic Ocean6) Australia7) Europe8) Indian Ocean9) Pacific Ocean 10) coord - I want to use geographical coordina…...
端对端加密是如何通过SDK防御实现的?
端对端加密(End-to-End Encryption,E2EE)是一种确保数据在传输过程中不被第三方截获和篡改的技术。随着网络安全威胁的日益增多,端对端加密在即时通讯、文件传输等领域变得越来越重要。本文将详细介绍如何通过SDK(Soft…...
Flutter:input输入框
输入框: // 是否显示关闭按钮 bool _showClear false; // 文字编辑控制器,监听搜索框的变化。 final TextEditingController _controller TextEditingController(); // 输入框发生变化事件 void _onChange(String value){if(value.length > 0){setS…...
RabbitMQ 与 PHP Swoole 实现
RabbitMQ 与 PHP Swoole 的结合实现 一、概述 RabbitMQ 是一个开源的消息队列中间件,允许通过异步消息传递来解耦应用程序的各个部分。Swoole 是一个高性能的 PHP 扩展,支持异步编程和协程,适用于构建高并发的网络服务。将 RabbitMQ 与 Swo…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
