当前位置: 首页 > news >正文

MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk)

MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk)

1.计算模型介绍

使用GARCH(广义自回归条件异方差)模型计算VaR(风险价值)时,方差法是一个常用的方法。GARCH模型能够捕捉到金融时间序列数据中的波动聚集性,即大的波动往往伴随着大的波动,小的波动往往伴随着小的波动。这种特性使得GARCH模型在风险管理中具有广泛的应用。

GARCH模型下的VaR计算通常涉及以下步骤:

(1)建立GARCH模型:

需要确定GARCH模型的阶数,这通常通过分析数据的自相关性和偏自相关性来完成。

然后,使用历史数据来估计GARCH模型的参数。

(2)预测波动率:

利用估计好的GARCH模型,可以预测未来一段时间的波动率。

波动率是衡量资产价格变动幅度的一个重要指标,它反映了资产价格的不确定性。

(3)计算VaR:

在得到了未来波动率的预测值后,可以使用VaR的计算公式来估计潜在的风险损失。

VaR的计算公式通常表示为:VaR = -P × Z × σ,其中P是资产的价值,Z是置信水平对应的分位数(例如,在95%的置信水平下,Z通常取1.645,这是基于正态分布的近似值),σ是预测的波动率。如果不乘以资产价格P, 得到的VaR是比例。

2. MATLAB代码
clc;close all;clear all;warning off;% clear all

rand('seed', 100);

randn('seed', 100);

format long g;

pricemat = [100, 101, 102, 99, 98, 100, 103, 105, 104, 102,105,106,106,108.5,103,110,112,135,100,111,112,113,95,96,96,98]';% 价格数据

returnmat = (pricemat(2:end)-pricemat(1:end-1)) ./ pricemat(1:end-1);% 计算收益率

% 设置garch模型

model1=garch('GARCHLags',1,'ARCHLags',1,'Distribution','Gaussian');% 设置garch(p,q)模型 正态分布

[model1,bb]=estimate(model1,returnmat);%估计该模型的参数 res是时间序列,为列向量

ht = infer(model1,returnmat);% 计算对应的条件方差

vF1 = forecast(model1,5,'Y0',returnmat);% 预测

[v,y_pre] = simulate(model1,length(returnmat));

confidence_level=0.90;% 置信水平

Zc=norminv(confidence_level,0,1);% 对应置信水平

VaR=Zc.*sqrt(ht);% 计算VaR VaR = -Zc × σ,其中Zc是置信水平对应的分位数,σ是预测的波动率

VaR

%

%% 绘图

figure;

plot(VaR,'b.-','linewidth',1);

legend({'VaR'},'fontname','宋体');

xlabel('日期','fontname','宋体');

ylabel('VaR(比例)','fontname','宋体');

title('VaR','fontname','宋体');

3.程序结果

    GARCH(1,1) Conditional Variance Model:

    ----------------------------------------

    Conditional Probability Distribution: Gaussian

                                  Standard          t    

     Parameter       Value          Error       Statistic

    -----------   -----------   ------------   -----------

     Constant    0.000685012   0.000598346        1.14484

     GARCH{1}       0.464416      0.211764        2.19308

      ARCH{1}       0.535584      0.462277        1.15858

VaR =

         0.107846021315506

        0.0813296872988432

        0.0654458648371772

        0.0622506064634835

        0.0549041830358687

        0.0537714791530977

        0.0570921236788682

        0.0545019945385363

        0.0508366217176573

        0.0514836920397382

         0.055829537347057

        0.0515013106538324

        0.0485474473133594

        0.0520470720278667

        0.0681424847286693

        0.0856987471245208

        0.0694739436633069

         0.201151576498066

         0.281142023268773

         0.220173500596007

         0.153979304489929

         0.110482088483556

         0.170626840986189

         0.121421937427502

        0.0892863901640001

>>

相关文章:

MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk)

MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk) 1.计算模型介绍 使用GARCH(广义自回归条件异方差)模型计算VaR(风险价值)时,方差法是一个常用的方法。GARCH模型能够捕捉到金融时间序列数据中的波…...

深入Linux基础:文件系统与进程管理详解

在Linux运维领域,文件系统和进程管理是两个至关重要的基础知识。理解它们的原理和实际操作,不仅有助于我们更高效地管理服务器,还能快速定位问题、优化性能。本文将带你全面了解这两大模块,并配以示例代码进行讲解,帮助…...

缓存及其不一致

在实际开发过程中,一般都会遇到缓存,像本地缓存(直接在程序里搞个map也可以,但是可能会随着数据的增长出现OOM,建议使用正经的本地缓存框架,因为自己实现淘汰策略啥的挺费劲的)、分布式缓存&…...

Leetcode 有效的数独

这段代码解决的是 验证一个数独是否有效 的问题,其算法思想是基于 规则校验和状态记录。具体思想如下: 算法思想 核心目标: 检查每个数字在 同一行、同一列 和 同一个 3x3 子格 中是否重复。 状态记录: 使用 3 个布尔二维数组分别…...

《Java核心技术 卷I》用户界面中首选项API

首选项API 在桌面程序中,通常都会存储用户首选项,如用户最后处理的文件、窗口的最后位置等。 利用Properties类可以很容易的加载和保存程序的配置信息,但有以下缺点: 有些操作系统没有主目录概念,很难为匹配文件找到…...

Android 中的 Zygote 和 Copy-on-Write 机制详解

在 Android 系统中,Zygote 是一个关键的进程,几乎所有的应用进程都是通过它 fork(派生)出来的。通过 Zygote 启动新进程的方式带来了显著的性能优势,这得益于 fork 操作和 Linux 中的 Copy-on-Write(COW&am…...

【人工智能】从零开始用Python实现逻辑回归模型:深入理解逻辑回归的原理与应用

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 逻辑回归是一种经典的统计学习方法,用于分类问题尤其是二分类问题。它通过学习数据的特征和目标标签之间的…...

推荐一款功能强大的光学识别OCR软件:Readiris Dyslexic

Readiris Dyslexic是一款功能强大的光学识别OCR软件,可以扫描任何纸质文档并将其转换为完全可编辑的数字文件(Word,Excel,PDF),然后用你喜欢的编辑器进行编辑。该软件提供了一种轻松创建,修改和签名PDF的完整解决方法&…...

Python爬虫----python爬虫基础

一、python爬虫基础-爬虫简介 1、现实生活中实际爬虫有哪些? 2、什么是网络爬虫? 3、什么是通用爬虫和聚焦爬虫? 4、为什么要用python写爬虫程序 5、环境和工具 二、python爬虫基础-http协议和chrome抓包工具 1、什么是http和https协议…...

css-50 Projects in 50 Days(3)

html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>旋转页面</title><link rel"sty…...

另外一种缓冲式图片组件的用法

文章目录 1. 概念介绍2. 使用方法2.1 基本用法2.2 缓冲原理3. 示例代码4. 内容总结我们在上一章回中介绍了"FadeInImage组件"相关的内容,本章回中将介绍CachedNetworkImage组件.闲话休提,让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章回中介绍的CachedNetwo…...

字节青训-小C的外卖超时判断、小C的排列询问

目录 一、小C的外卖超时判断 问题描述 测试样例 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 最终代码&#xff1a; 运行结果&#xff1a; 二、小C的排列询问 问题描述 测试样例 最终代码&#xff1a; 运行结果&#xff1a; ​编辑 一、小C的外卖超时判断…...

PHP 伪静态详解及实现方法

概述 在现代 Web 开发中&#xff0c;URL 的设计对用户体验和搜索引擎优化&#xff08;SEO&#xff09;至关重要。动态 URL 虽然功能强大&#xff0c;但往往显得冗长且不友好。伪静态&#xff08;URL 重写&#xff09;技术通过将动态 URL 转换为静态样式&#xff0c;不仅提高了…...

Spring Boot 简单预览PDF例子

目录 前言 一、引入依赖 二、使用步骤 1.创建 Controller 处理 PDF 生成和预览 2.创建预览页面 总结 前言 使用 Spring Boot 创建一个生成 PDF 并进行预览的项目&#xff0c;你可以按以下步骤进行。我们将使用 Spring Boot、Thymeleaf、iText 等技术来完成这个任务。 一、引入…...

【魔珐有言-注册/登录安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被机器执行自动化程序攻击&#xff0c;存在如下风险&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露&#xff0c;不符合国家等级保护的要求。短信盗刷带来的拒绝服务风险 &#xff0c;造成用户无法登陆、注册&#xff0c;大量收到垃圾短信的…...

LabVIEW 使用 Snippet

在 LabVIEW 中&#xff0c;Snippet&#xff08;代码片段&#xff09; 是一个非常有用的功能&#xff0c;它允许你将 一小段可重用的代码 保存为一个 图形化的代码片段&#xff0c;并能够在不同的 VI 中通过拖放来使用。 什么是 Snippet&#xff1f; Snippet 就是 LabVIEW 中的…...

单片机_day3_GPIO

目录 1. 灯如何才能亮 1.1原理图 1.2 二极管 1.3 换了一个灯和原理图 ​编辑 1.4 三极管 1.4.1 NPN型三极管 1.4.2 PNP型三极管 2. 基本概念 3. 输入 3.1 浮空输入 3.2 上拉输入 3.3 下拉输入 3.4 模拟输入 4. 输出 4.1 推挽输出 4.2 开漏输出 如何让开漏输出…...

Python小游戏24——小恐龙躲避游戏

首先&#xff0c;你需要安装Pygame库。如果你还没有安装&#xff0c;可以通过以下命令安装&#xff1a; 【bash】 pip install pygame 【python】代码 import pygame import random # 初始化Pygame pygame.init() # 设置屏幕尺寸 screen_width 800 screen_height 600 screen …...

Python 的多态笔记

Python的多态实际是通过instance 实现的 class Person:def __init__(self, name,age):self.name nameself.age agedef feed_pet(self,pet):#isinastance(obj,类)-->判断obj,是不是这个类的对象&#xff0c;或者判断obj是不是该类的子类的对象if isinstance(pet, Pet):sel…...

go module使用

go module介绍 go module是go官⽅⾃带的go依赖管理库,在1.13版本正式推荐使⽤ go module可以将某个项⽬(⽂件夹)下的所有依赖整理成⼀个 go.mod ⽂件,⾥⾯写⼊了依赖的版本等 使⽤ go module之后我们可不⽤将代码放置在src下了 使⽤ go module 管理依赖后会在项⽬根⽬录下⽣成…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...