深度学习:神经网络中线性层的使用
深度学习:神经网络中线性层的使用
在神经网络中,线性层(也称为全连接层或密集层)是基础组件之一,用于执行输入数据的线性变换。通过这种变换,线性层可以重新组合输入数据的特征,并将其映射到新的表示空间,这是实现复杂模式识别和学习的关键步骤。
线性层的基本概念
线性层的数学表达式定义为:
[ \mathbf{y} = \mathbf{Wx} + \mathbf{b} ]
其中:
- (\mathbf{x}) 是输入向量,其维度为 (n \times 1)。
- (\mathbf{W}) 是权重矩阵,其维度为 (m \times n)。这里 (m) 是输出特征的数量,而 (n) 是输入特征的数量。
- (\mathbf{b}) 是偏置向量,其维度为 (m \times 1)。
- (\mathbf{y}) 是输出向量,其维度为 (m \times 1)。
功能和重要性
线性层的核心功能是特征转换。通过调整权重 (\mathbf{W}) 和偏置 (\mathbf{b}),线性层能够从输入数据中抽取和学习有用的特征,并将这些特征映射到适用于特定任务(如分类或回归)的新空间。此外,线性层是实现深层神经网络中多层表示学习的基础结构。
虽然线性层仅进行线性变换,但与非线性激活函数(如ReLU或Sigmoid)结合使用时,它们可以构成能学习复杂函数的网络,从而处理复杂的非线性问题。
nn.Linear() 参数的含义及设置
nn.Linear() 是 PyTorch 中实现线性层的类。它的参数如下:
in_features:指定输入向量的特征数量,即上面公式中的 (n)。out_features:指定输出向量的特征数量,即上面公式中的 (m)。bias:一个布尔值,用于指定是否在线性变换中添加偏置 (\mathbf{b})。默认为True,即包含偏置。
示例解释
假设我们需要处理一个简单的二维分类任务,我们的目标是将输入向量分类到两个不同的类别中。这里,我们使用一个包含单个线性层的神经网络模型来学习如何根据输入向量进行分类。
修改后的完整示例:
import torch
import torch.nn as nn# 定义一个包含单一线性层的简单神经网络
class SimpleLinearModel(nn.Module):def __init__(self):super(SimpleLinearModel, self).__init__()# 定义线性层:输入特征数为2,输出特征数也为2(表示两个分类的得分)self.linear = nn.Linear(in_features=2, out_features=2)def forward(self, x):# 通过线性层传递输入,得到输出output = self.linear(x)return output# 创建模型实例
model = SimpleLinearModel()# 创建一些示例数据
input_data = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
output_data = model(input_data)print("Output of the linear layer:")
print(output_data)
在这个示例中,通过设置 in_features 和 out_features 为 2,我们配置线性层以接受二维输入并输出两个得分,每个得分对应一个类别。这使得模型可以基于每个输入向量给出两个类别的相对得分。通常,为了完成分类任务,我们会在该线性输出后应用一个Softmax函数,将得分转换为概率,从而决定输入向量属于哪个类别。
这种设置展示了线性层在神经网络中处理特征和执行分类任务中的基本作用,同时也体现了其在实现机器学习模型中的关键角色。
相关文章:
深度学习:神经网络中线性层的使用
深度学习:神经网络中线性层的使用 在神经网络中,线性层(也称为全连接层或密集层)是基础组件之一,用于执行输入数据的线性变换。通过这种变换,线性层可以重新组合输入数据的特征,并将其映射到新…...
【刷题】算法设计题+程序设计题【2】2019-2024
11.202019年真题*2BST二叉排序树分裂、双向冒泡排序 2019 真题 【2019 1】编写算法,将一棵二叉排序树 分解成两棵二叉排序树 t1和t2,使得t1中的所有结点关键字的值都小于x,t2中所有结点关键字都大于x。 typedef struct BSTNode{int data;str…...
搭建es环境
centos7搭建elasticsearch环境 首先考虑使用 Docker 来安装 Elasticsearch、Kibana 和 Logstash。在安装过程中,可能会遇到一些问题,但通过适当的方法可以解决。 docker pull docker.elastic.co/elasticsearch/elasticsearch:8.14.3 首先创建一个网络&a…...
阿里云和七牛云对象存储区别和实现
七牛云对象存储操作(QiniuUtil) 配置:使用 com.qiniu.storage.Configuration 类来配置上传设置,如指定区域(Region)和分片上传版本。上传管理器:通过 UploadManager 类来处理文件上传。认证&am…...
uniapp微信小程序接入airkiss插件进行WIFI配网
本文可参考uniapp小程序插件 一.申请插件 微信公众平台设置页链接:微信公众平台 登录您的小程序微信公众平台,进入设置页,在第三方设置->插件管理->添加插件中申请AiThinkerAirkissforWXMini插件,申请的插件appId为【wx6…...
03 —— Webpack 自动生成 html 文件
HtmlWebpackPlugin | webpack 中文文档 | webpack中文文档 | webpack中文网 安装 npm install --save-dev html-webpack-plugin 下载html-webpack-plugin本地软件包 npm i html-webpack-plugin --save-dev 配置webpack.config.js让webpack拥有插件功能 const HtmlWebpack…...
Python毕业设计选题:基于python的豆瓣电影数据分析可视化系统-flask+spider
开发语言:Python框架:flaskPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 系统首页 个人中心 管理员登录界面 管理员功能界面 电影管理 用户管理 系统管理 摘要…...
抽象类能使用final修饰吗?
不能。 在java中,抽象类不能使用final修饰。原因是final修饰符用于类不能被继承,而抽象类的主要用途就是被继承以提供基础实现或定义抽象方法供子类实现。这两个互相矛盾,因此不能同时使用。 具体解释 abstract修饰符:用于定义一个抽象类&…...
C语言内存:我家大门常打开
C语言本着自由开放的理念,并不禁止程序访问非法内存。 什么是非法内存?就是那本不是你家的地,你却硬跑过去种庄稼。 或者,你在澡堂子里拿着自己的钥匙去捅别人的柜。 这种行为当然后果难料。 可能你捅了半天,火花冒…...
路由协议——iBGP与EBGP
一、适用场景 1、企业需要连接总部与分部,但总部与分部运行着不同的路由协议,总部到分部有自建的专线,端到端的设备支持BGP路由协议。 2、网络运营商,如电信、联通、移动等,各区域的ip路由表庞大,若要完成…...
【Linux】基础02
Linux编译和调试 VI编辑文件 vi : 进入文件编辑 是命令行模式 i :从光标处进入插入模式 dd : 删除光标所在行 n dd 删除指定行数 Esc : 退出插入模式 : 冒号进入末行模式 :wq : 保存退出 :q : 未修改文件可以退出 :q! …...
Elasticsearch面试内容整理-安全与权限管理
在 Elasticsearch 中,安全与权限管理至关重要,特别是当系统处理敏感数据时。Elasticsearch 提供了一套全面的安全机制来确保数据的机密性、完整性和可用性。以下是 Elasticsearch 安全与权限管理的详细介绍。 安全组件概述 Elasticsearch 的安全功能由 Elastic Stack 提供的一…...
【数据分享】中国汽车工业年鉴(1986-2023)
本年鉴是由工业和信息化部指导,中国汽车技术研究中心有限公司与中国汽车工业协会联合主办。《年鉴》是全面、客观记载中国汽车工业发展与改革历程的重要文献,内容涵盖汽车产业政策、标准、企业、市场以及全国各省市汽车工业发展情况,并调查汇…...
el-cascader 使用笔记
1.效果 2.官网 https://element.eleme.cn/#/zh-CN/component/cascader 3.动态加载(官网) <el-cascader :props"props"></el-cascader><script>let id 0;export default {data() {return {props: {lazy: true,lazyLoad (…...
代替Spinnaker 的 POINTGREY工业级相机 FLIR相机 Python编程案例
SpinnakerSDK_FULL_4.0.0.116_x64 是一个用于FLIR相机的SDK,主要用于图像采集和处理。Spinnaker SDK主要提供C接口,无法直接应用在python环境。本文则基于Pycharm2019python3.7的环境下,调用opencv,EasySpin,PySpin,的库实现POINTGREY工业级相…...
网络篇12 | SSH2协议应用,禁SFTP子模式实现文件传输
网络篇12 | SSH2的应用 解决的业务问题协议选定SSH2(Secure Shell 2,目前基本用这个)SSH1(Secure Shell 1)Telnet 代码实现落地方案1:ganymed-ssh2maven坐标关键源代码技术效果验证连接高版本OpenSSH报错分…...
MetaGPT实现多动作Agent
异步编程学习链接 智能体 LLM观察思考行动记忆 多智能体 智能体环境SOP评审路由订阅经济 教程地址 多动作的agent的本质是react,这包括了think(考虑接下来该采取啥动作)act(采取行动) 在MetaGPT的examples/write_…...
docker更新镜像源
常用的国内 Docker 镜像加速器 1. 阿里云镜像加速器:https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors 2. 腾讯云镜像加速器:https://cloud.tencent.com/document/product/457/33221 3. 网易云镜像加速器:https://hub-mirror…...
TSmaster Trace 窗口
文章目录 1、设置显示刷新率2、设置显示报文格式3、报文过滤3.1 基于报文通道3.2 基于报文 ID过滤3.3 基于过滤字符串(FilterString)过滤 4、信号的折叠与展开5、固定显示和时间顺序显示切换6、关闭窗体 1、设置显示刷新率 为了降低软件 CPU 占用率&…...
【Python模拟websocket登陆-拆包封包】
Python模拟websocket登陆-拆包封包 解析一个网站获取wss原始数据拆包wss数据封包wss数据发送接收websocket的常驻后台脚本总结 解析一个网站 这里所用的网站是我一个内测的网站,主要手段是chrome devtools,用得很多,但我玩的不深,…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权
摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题:安全。文章将详细阐述认证(Authentication) 与授权(Authorization的核心概念,对比传统 Session-Cookie 与现代 JWT(JS…...
