内容补充页(相关公式解释)
from 学习日记_20241117_聚类方法(高斯混合模型)
学习日记_20241117_聚类方法(高斯混合模型)
公式 P ( Z = k ) = π k P(Z=k) = \pi_k P(Z=k)=πk
在高斯混合模型 (GMM) 中,公式 P ( Z = k ) = π k P(Z=k) = \pi_k P(Z=k)=πk 描述了选择某个高斯成分 k k k 的概率,其中 Z Z Z 是一个潜在变量(latent variable),表示数据点所属的成分。
详细解释
-
潜在变量 Z Z Z:
- Z Z Z 是一个离散随机变量,它的取值范围为 { 1 , 2 , … , K } \{1, 2, \ldots, K\} {1,2,…,K},其中 K K K 是模型中高斯成分的数量。每个 k k k 对应一个高斯分布。
-
权重 π k \pi_k πk:
- π k \pi_k πk 是与成分 k k k 相关的权重,表示在所有成分中选择成分 k k k 的概率。它满足以下条件:
- π k ≥ 0 \pi_k \geq 0 πk≥0(非负性)
- ∑ k = 1 K π k = 1 \sum_{k=1}^{K} \pi_k = 1 ∑k=1Kπk=1(归一化条件)
- π k \pi_k πk 是与成分 k k k 相关的权重,表示在所有成分中选择成分 k k k 的概率。它满足以下条件:
-
模型解释:
- 这个公式表明,在生成数据的过程中,根据权重 π k \pi_k πk,我们会选择其中一个成分 k k k。这个选择是随机的,但在长期来看,每个成分 k k k 被选择的概率正好等于其权重 π k \pi_k πk。
生成过程
在 GMM 的生成过程中,首先选择一个成分 $ Z $,然后在选择的成分下从对应的高斯分布中生成样本 $ X $。这个过程可以概述为:
-
从权重分布中选择成分 k k k:
P ( Z = k ) = π k P(Z=k) = \pi_k P(Z=k)=πk -
在选择的成分下,从该成分的高斯分布中生成数据:
X ∣ Z = k ∼ N ( μ k , Σ k ) X | Z=k \sim \mathcal{N}(\mu_k, \Sigma_k) X∣Z=k∼N(μk,Σk)
例子
假设我们有一个 GMM 模型,其中包含两个高斯成分(即 K = 2 K = 2 K=2),其权重分别为 π 1 = 0.6 \pi_1 = 0.6 π1=0.6 和 π 2 = 0.4 \pi_2 = 0.4 π2=0.4。这意味着:
- 有 60% 的概率选择成分 1,生成该成分下的样本。
- 有 40% 的概率选择成分 2,生成该成分下的样本。
总结
公式 P ( Z = k ) = π k P(Z=k) = \pi_k P(Z=k)=πk 是高斯混合模型的核心部分,定义了数据生成过程中选择每个高斯成分的概率。通过这些成分的加权组合,GMM 能够有效地建模复杂的分布结构。
公式 X ∣ Z = k ∼ N ( μ k , Σ k ) X | Z=k \sim \mathcal{N}(\mu_k, \Sigma_k) X∣Z=k∼N(μk,Σk)
公式 X ∣ Z = k ∼ N ( μ k , Σ k ) X | Z=k \sim \mathcal{N}(\mu_k, \Sigma_k) X∣Z=k∼N(μk,Σk)描述的是在给定潜在变量 Z Z Z 等于某个特定值 k k k 的情况下,随机变量 X X X 的条件分布。这里的含义可以分解为以下几点:
1. 条件分布
- X ∣ Z = k X | Z=k X∣Z=k 表示在选择了成分 k k k 的条件下生成的数据点 X X X。
- 这意味着我们只关注在成分 k k k 下生成的数据特性。
2. 高斯分布
- ∼ N ( μ k , Σ k ) \sim \mathcal{N}(\mu_k, \Sigma_k) ∼N(μk,Σk) 表示 X X X 服从均值为 μ k \mu_k μk、协方差矩阵为 Σ k \Sigma_k Σk 的多元高斯分布(或正态分布)。
- 均值 μ k \mu_k μk:这是成分 k k k 的中心位置,表示该成分的“典型”数据点。
- 协方差矩阵 Σ k \Sigma_k Σk:它描述了成分 k k k 的数据点的分布形状和方向。协方差矩阵的对角线元素表示不同特征的方差,而非对角线元素则表示特征之间的相关性。
3. 模型的生成过程
在高斯混合模型中,生成数据的过程可以总结为以下两步:
-
选择成分:
- 根据权重 π k \pi_k πk 随机选择一个成分 k k k。
-
生成样本:
- 一旦选择了成分 k k k,根据该成分的高斯分布生成数据点 X X X。这可以通过从高斯分布中抽样来实现。
举例说明
假设我们有两个高斯成分 K = 2 K=2 K=2:
- 成分 1: μ 1 = [ 2 , 3 ] \mu_1 = [2, 3] μ1=[2,3], Σ 1 = [ 1 0 0 1 ] \Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} Σ1=[1001]
- 成分 2: μ 2 = [ 5 , 7 ] \mu_2 = [5, 7] μ2=[5,7], Σ 2 = [ 2 0 0 2 ] \Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} Σ2=[2002]
在生成数据时:
- 以一定的概率(例如 π 1 = 0.6 \pi_1 = 0.6 π1=0.6, π 2 = 0.4 \pi_2 = 0.4 π2=0.4)选择成分。
- 如果选择成分 1,生成的数据点 X X X 将会满足:
X ∣ Z = 1 ∼ N ( [ 2 3 ] , [ 1 0 0 1 ] ) X | Z=1 \sim \mathcal{N}\left(\begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) X∣Z=1∼N([23],[1001])
这意味着生成的点将会在均值 [ 2 , 3 ] [2, 3] [2,3] 附近,并且具有单位方差,表示每个维度独立。
总结
公式 X ∣ Z = k ∼ N ( μ k , Σ k ) X | Z=k \sim \mathcal{N}(\mu_k, \Sigma_k) X∣Z=k∼N(μk,Σk)
是高斯混合模型的核心部分,描述了在选择特定高斯成分 k k k 的情况下数据的分布特性。通过不同成分的组合,GMM 能够灵活地捕捉复杂数据集的结构。
相关文章:
内容补充页(相关公式解释)
from 学习日记_20241117_聚类方法(高斯混合模型) 学习日记_20241117_聚类方法(高斯混合模型) 公式 P ( Z k ) π k P(Zk) \pi_k P(Zk)πk 在高斯混合模型 (GMM) 中,公式 P ( Z k ) π k P(Zk) \pi_k P(Zk…...
vue中动态渲染静态图片资源
不报错且f12查看元素的时候,显示的src说明已经渲染到html的src上,但是就是不显示在页面上 原因 在vue上,动态渲染静态图片资源(比如从assets文件夹加载的图片)需要注意打包工具对静态资源的解析方式 由于vue2的脚手…...
管伊佳ERP,原名华夏ERP,一个简约易上手的国产ERP系统
JSH_ERP(管伊佳ERP)是一款开源、模块化的企业资源计划系统,旨在为中小企业提供高效的管理工具。它基于SpringBoot框架和SaaS模式,支持进销存、财务、生产等业务模块,包括零售、采购、销售、仓库和报表管理。 核心特点…...
学习虚幻C++开发日志——委托(持续更新中)
委托 官方文档:Delegates and Lamba Functions in Unreal Engine | 虚幻引擎 5.5 文档 | Epic Developer Community | Epic Developer Community 简单地说,委托就像是一个“函数指针”,但它更加安全和灵活。它允许程序在运行时动态地调用不…...
开窗函数 - first_value/last_value
1、开窗函数是什么? 开窗函数用于为行定义一个窗口(这里的窗口是指运算将要操作的行的集合),它对一组值进行操作,不需要使用 GROUP BY 子句对数据进行分组,能够在同一行中同时返回基础行的列和聚合列。 2、…...
「一」HarmonyOS端云一体化概要
关于作者 白晓明 宁夏图尔科技有限公司董事长兼CEO、坚果派联合创始人 华为HDE、润和软件HiHope社区专家、鸿蒙KOL、仓颉KOL 华为开发者学堂/51CTO学堂/CSDN学堂认证讲师 开放原子开源基金会2023开源贡献之星 「目录」 「一」HarmonyOS端云一体化概要 「二」体验HarmonyOS端云一…...
nodejs21: 快速构建自定义设计样式Tailwind CSS
Tailwind CSS 是一个功能强大的低级 CSS 框架,只需书写 HTML 代码,无需书写 CSS,即可快速构建美观的网站。 1. 安装 Tailwind CSS React 项目中安装 Tailwind CSS: 1.1 安装 Tailwind CSS 和相关依赖 安装 Tailwind CSS: npm…...
从JSON数据提取嵌套字段并转换为独立列的简洁方法
从JSON数据提取嵌套字段并转换为独立列的简洁方法 在数据处理和数据分析的日常工作中,我们经常遇到复杂的嵌套数据结构,特别是嵌入在JSON字段中的数据。这些数据往往需要解析并展开成独立的列,以便后续分析和建模。本文将详细介绍如何在Pyth…...
湘潭大学软件工程算法设计与分析考试复习笔记(四)
回顾 湘潭大学软件工程算法设计与分析考试复习笔记(一)湘潭大学软件工程算法设计与分析考试复习笔记(二)湘潭大学软件工程算法设计与分析考试复习笔记(三) 前言 现在是晚上十一点,我平时是十…...
特征交叉-DeepCross Network学习
一 tensorflow官方实现 tensorflow的官方实现已经是V2版本 class Cross(tf.keras.layers.Layer):"""Cross Layer in Deep & Cross Network to learn explicit feature interactions.Args:projection_dim: int,低秩矩阵的维度,应该小…...
stm32cubemx+VSCODE+GCC+makefile 开发环境搭建
title: stm32cubemxVSCODEGCCmakefile 开发环境搭建 tags: FreertosHalstm32cubeMx 文章目录 内容往期内容导航第一步准备环境vscode 插件插件配置点灯 内容 往期内容导航 第一步准备环境 STM32CubeMXVSCODEMinGWOpenOcdarm-none-eabi-gcc 然后把上面下载的软件 3 4 5 bin 文…...
Go语言中的Defer机制详解与示例
在Go语言中,defer是一个关键字,用于确保资源的清理和释放,特别是在函数中创建的资源。defer语句会将其后的函数调用推迟到包含它的函数即将返回时执行。这使得defer成为处理文件关闭、数据库连接释放、解锁等资源清理操作的理想选择。 Defer…...
H.265流媒体播放器EasyPlayer.js H5流媒体播放器如何验证视频播放是否走硬解
随着技术的不断进步和5G网络的推广,中国流媒体播放器行业市场规模以及未来发展趋势都将持续保持稳定的增长,并将在未来几年迎来新的发展机遇。流媒体播放器将继续作为连接内容创作者和观众的重要桥梁,推动数字媒体产业的创新和发展。 EasyPla…...
ms-hot目录
1. ms-hot1...
vulfocus在线靶场:骑士cms_cve_2020_35339:latest 速通手册
目录 一、启动环境,访问页面,ip:端口号/index.php?madmin,进入后台管理页面,账号密码都是adminadmin 二、进入之后,根据图片所示,地址后追加一下代码,保存修改 三、新开标签页访问:①ip:端…...
AI Large Language Model
AI 的 Large Language model LLM , 大语言模型: 是AI的模型,专门设计用来处理自然语言相关任务。它们通过深度学习和庞大的训练数据集,在理解和生成自然语言文本方面表现出色。常见的 LLM 包括 OpenAI 的 GPT 系列、Google 的 PaLM 和 Meta…...
React Native的`react-native-reanimated`库中的`useAnimatedStyle`钩子来创建一个动画样式
React Native的react-native-reanimated库中的useAnimatedStyle钩子来创建一个动画样式,用于一个滑动视图的每个项目(SliderItem)。useAnimatedStyle钩子允许你根据动画值(在这个例子中是scrollX)来动态地设置组件的样…...
FastJson反序列化漏洞(CVE-2017-18349)
漏洞原理 原理就不多说了,可以去看我这篇文章,已经写得很详细了。 Java安全—log4j日志&FastJson序列化&JNDI注入-CSDN博客 影响版本 FastJson<1.2.24 复现过程 这里我是用vulfocus.cn这个漏洞平台去复现的,比较方便&#x…...
【优选算法篇】分治乾坤,万物归一:在重组中窥见无声的秩序
文章目录 分治专题(二):归并排序的核心思想与进阶应用前言、第二章:归并排序的应用与延展2.1 归并排序(medium)解法(归并排序)C 代码实现易错点提示时间复杂度和空间复杂度 2.2 数组…...
C++:探索AVL树旋转的奥秘
文章目录 前言 AVL树为什么要旋转?一、插入一个值的大概过程1. 插入一个值的大致过程2. 平衡因子更新原则3. 旋转处理的目的 二、左单旋1. 左单旋旋转方式总处理图2. 左单旋具体会遇到的情况3. 左单旋代码总结 三、右单旋1. 右单旋旋转方式总处理图2. 右单旋具体会遇…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
