当前位置: 首页 > news >正文

Selenium + 数据驱动测试:从入门到实战!

引言

在软件测试中,测试数据的多样性和灵活性对测试覆盖率至关重要。而数据驱动测试(Data-Driven Testing)通过将测试逻辑与数据分离,极大地提高了测试用例的可维护性和可扩展性。本文将结合Selenium这一流行的测试工具,手把手讲解数据驱动测试的实现方法,包括环境准备、代码实战以及最佳实践,帮助你快速掌握这一关键技能。  

什么是数据驱动测试?

数据驱动测试是一种通过外部数据源(如Excel、CSV、数据库等)驱动测试用例的自动化测试方法。在这种方法中,测试脚本是固定的,而测试数据可以灵活变化。 

数据驱动测试的优势

  • 提升测试效率: 一套脚本即可覆盖多组数据,减少重复劳动。  

  • 易于维护: 数据与逻辑分离,测试数据的更改无需修改代码。  

  • 覆盖率更高:能够轻松测试多种边界条件和异常情况。  

适用场景

  • 测试输入字段(如表单验证)。  

  • API测试中不同请求参数的验证。  

  • UI自动化测试中的多种用户操作路径。  

图片

环境准备

图片

在开始之前,你需要设置以下开发环境:  

1. 工具与依赖: 

  •    Selenium WebDriver: 用于UI自动化测试。  

  •    TestNG 或 JUnit:测试框架,用于管理测试用例。  

  •    Apache POI: 用于读取和写入Excel文件(如果使用Excel作为数据源)。  

  •    IDE: 推荐使用IntelliJ IDEA或Eclipse。  

  •    JDK: 版本 8 或以上。  

2. Maven依赖配置:

在`pom.xml`文件中添加以下依赖: 

<dependencies>    <dependency>        <groupId>org.seleniumhq.selenium</groupId>        <artifactId>selenium-java</artifactId>        <version>4.0.0</version>    </dependency>    <dependency>        <groupId>org.testng</groupId>        <artifactId>testng</artifactId>        <version>7.4.0</version>    </dependency>    <dependency>        <groupId>org.apache.poi</groupId>        <artifactId>poi-ooxml</artifactId>        <version>5.2.3</version>    </dependency></dependencies>

图片

数据驱动测试的实现方法

以下是一个完整的实战案例,展示如何通过Selenium和TestNG实现数据驱动测试,使用Excel作为测试数据源。  

步骤 1:准备测试数据

在Excel文件中准备测试数据,例如,测试表单的登录功能:  

图片

步骤 2:创建Excel读取工具类

import org.apache.poi.ss.usermodel.*;import java.io.File;import java.io.FileInputStream;public class ExcelUtils {    public static Object[][] getTestData(String filePath, String sheetName) {        Object[][] data = null;        try {            FileInputStream fis = new FileInputStream(new File(filePath));            Workbook workbook = WorkbookFactory.create(fis);            Sheet sheet = workbook.getSheet(sheetName);            int rows = sheet.getPhysicalNumberOfRows();            int cols = sheet.getRow(0).getPhysicalNumberOfCells();            data = new Object[rows - 1][cols];            for (int i = 1; i < rows; i++) {                Row row = sheet.getRow(i);                for (int j = 0; j < cols; j++) {                    data[i - 1][j] = row.getCell(j).toString();                }            }        } catch (Exception e) {            e.printStackTrace();        }        return data;    }}

步骤 3:编写测试脚本

import org.openqa.selenium.WebDriver;import org.openqa.selenium.WebElement;import org.openqa.selenium.By;import org.openqa.selenium.chrome.ChromeDriver;import org.testng.Assert;import org.testng.annotations.DataProvider;import org.testng.annotations.Test;public class DataDrivenTest {    WebDriver driver;    @DataProvider(name = "loginData")    public Object[][] getData() {        return ExcelUtils.getTestData("testdata.xlsx", "Sheet1");    }    @Test(dataProvider = "loginData")    public void loginTest(String username, String password, String expectedResult) {        System.setProperty("webdriver.chrome.driver", "path/to/chromedriver");        driver = new ChromeDriver();        driver.get("https://example.com/login");        WebElement usernameField = driver.findElement(By.id("username"));        WebElement passwordField = driver.findElement(By.id("password"));        WebElement loginButton = driver.findElement(By.id("login"));        usernameField.sendKeys(username);        passwordField.sendKeys(password);        loginButton.click();        String actualResult = driver.findElement(By.id("result")).getText();        Assert.assertEquals(actualResult, expectedResult);        driver.quit();    }}

图片

数据驱动测试的最佳实践

1. 数据设计需全面:

   包括正常数据、边界数据和异常数据,确保覆盖率高。  

2. 数据文件与代码分离:  

   数据存储在外部文件中(如Excel或CSV),代码仅处理逻辑部分。  

3. 自动化与手动测试结合:

   数据驱动测试能有效覆盖大量数据场景,但手动测试更适合探索性验证。  

4. 关注日志与报告:

   使用TestNG生成的测试报告,记录测试用例的执行结果,便于问题定位。  

常见问题与解决方法

问题:Excel文件无法读取

  检查路径是否正确,确保Excel文件未被其他程序占用。  

问题:数据驱动导致用例执行缓慢

 使用更高效的文件读取库,或优化测试脚本逻辑。 

图片

写在最后

通过本文,你了解了数据驱动测试的核心概念、实现步骤以及实际应用场景。结合Selenium的强大功能,数据驱动测试能够有效提升测试效率和覆盖率。接下来,尝试在你的项目中实现这一方法,将理论与实践相结合,让自动化测试更上一层楼!  

最后感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走! 

软件测试面试文档

我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

相关文章:

Selenium + 数据驱动测试:从入门到实战!

引言 在软件测试中&#xff0c;测试数据的多样性和灵活性对测试覆盖率至关重要。而数据驱动测试&#xff08;Data-Driven Testing&#xff09;通过将测试逻辑与数据分离&#xff0c;极大地提高了测试用例的可维护性和可扩展性。本文将结合Selenium这一流行的测试工具&#xff0…...

LLaMA与ChatGLM选用比较

目录 1. 开发背景 2. 目标与应用 3. 训练数据 4. 模型架构与规模 5. 开源与社区支持 6. 对话能力 7. 微调与应用 8. 推理速度与资源消耗 总结 LLaMA(Large Language Model Meta AI)和 ChatGLM(Chat Generative Language Model)都是强大的大型语言模型,但它们有一…...

GPTZero:高效识别AI生成文本,保障学术诚信与内容原创性

产品描述 GPTZero 是一款先进的AI文本检测工具&#xff0c;专为识别由大型语言模型&#xff08;如ChatGPT、GPT-4、Bard等&#xff09;生成的文本而设计。它通过分析文本的复杂性和一致性&#xff0c;判断文本是否可能由人类编写。GPTZero 已经得到了超过100家媒体机构的报道&…...

C/C++ 优化,strlen 示例

目录 C/C optimization, the strlen examplehttps://hallowed-blinker-3ca.notion.site/C-C-optimization-the-strlen-example-108719425da080338d94c79add2bb372 揭开优化的神秘面纱... 让我们来谈谈 CPU 等等&#xff0c;SIMD 是什么&#xff1f; 为什么 strlen 是一个很…...

【动手学深度学习Pytorch】1. 线性回归代码

零实现 导入所需要的包&#xff1a; # %matplotlib inline import random import torch from d2l import torch as d2l import matplotlib.pyplot as plt import matplotlib import os构造人造数据集&#xff1a;假设w[2, -3.4]&#xff0c;b4.2&#xff0c;存在随机噪音&…...

深入理解PyTorch中的卷积层:工作原理、参数解析与实际应用示例

深入理解PyTorch中的卷积层&#xff1a;工作原理、参数解析与实际应用示例 在PyTorch中&#xff0c;卷积层是构建卷积神经网络&#xff08;CNNs&#xff09;的基本单元&#xff0c;广泛用于处理图像和视频中的特征提取任务。通过卷积操作&#xff0c;网络可以有效地学习输入数…...

DataGear 5.2.0 发布,数据可视化分析平台

DataGear 企业版 1.3.0 已发布&#xff0c;欢迎体验&#xff01; http://datagear.tech/pro/ DataGear 5.2.0 发布&#xff0c;图表插件支持定义依赖库、严重 BUG 修复、功能改进、安全增强&#xff0c;具体更新内容如下&#xff1a; 重构&#xff1a;各模块管理功能访问路径…...

uniapp: vite配置rollup-plugin-visualizer进行小程序依赖可视化分析减少vender.js大小

一、前言 在之前文章《uniapp: 微信小程序包体积超过2M的优化方法&#xff08;主包从2.7M优化到1.5M以内&#xff09;》中&#xff0c;提到了6种优化小程序包体积的方法&#xff0c;但并没有涉及如何分析common/vender.js这个文件的优化&#xff0c;而这个文件的大小通常情况下…...

深度学习:如何复现神经网络

深度学习&#xff1a;如何复现神经网络 要复现图中展示的卷积神经网络&#xff08;CNN&#xff09;&#xff0c;我们需详细了解和配置每层网络的功能与设计理由。以下将具体解释各层的配置以及设计选择的原因&#xff0c;确保网络设计的合理性与有效性。 详细的网络层配置与设…...

Spring Boot与MyBatis-Plus的高效集成

Spring Boot与MyBatis-Plus的高效集成 引言 在现代 Java 开发中&#xff0c;MyBatis-Plus 作为 MyBatis 的增强工具&#xff0c;以其简化 CRUD 操作和无需编写 XML 映射文件的特点&#xff0c;受到了开发者的青睐。本篇文章将带你一步步整合 Spring Boot 与 MyBatis-Plus&…...

【Unity ShaderGraph实现流体效果之Function入门】

Unity ShaderGraph实现流体效果之Node入门&#xff08;一&#xff09; 前言Shader Graph NodePosition NodeSplit NodeSubtract NodeBranch Node 总结 前言 Unity 提供的Shader Graph在很大程度上简化了开发者对于编写Shader的工作&#xff0c;只需要拖拽即可完成一个视觉效果…...

Spark RDD sortBy算子执行时进行数据 “采样”是什么意思?

一、sortBy 和 RangePartitioner sortBy 在 Spark 中会在执行排序时采用 rangePartitioner 进行分区&#xff0c;这会影响数据的分区方式&#xff0c;并且这一步骤是通过对数据进行 “采样” 来计算分区的范围。不过&#xff0c;重要的是&#xff0c;sortBy 本身仍然是一个 tr…...

React-useRef与DOM操作

#题引&#xff1a;我认为跟着官方文档学习不会走歪路 ref使用 组件重新渲染时&#xff0c;react组件函数里的代码会重新执行&#xff0c;返回新的JSX&#xff0c;当你希望组件“记住”某些信息&#xff0c;但又不想让这些信息触发新的渲染时&#xff0c;你可以使用ref&#x…...

Mistral AI 发布 Pixtral Large 模型:多模态时代的开源先锋

Mistral AI 最新推出的 Pixtral Large 模型&#xff0c;带来了更强的多模态能力。作为一款开源的多模态模型&#xff0c;它不仅在参数量上达到 1240 亿&#xff0c;更在文本和图像理解上实现了质的飞跃。 模型亮点 1. 多模态能力再升级 Pixtral Large 配备了 123B 参数的解码器…...

Windows、Linux多系统共享蓝牙设备

Windows、Linux多系统共享蓝牙设备 近来遇到一个新问题&#xff0c;就是双系统共享蓝牙鼠标。因为一直喜欢在Windows、Linux双系统之间来回切换&#xff0c;而每次切换系统蓝牙就必须重新配对&#xff0c;当然&#xff0c;通过网络成功解决了问题。 通过这个问题&#xff0c;稍…...

C语言 | Leetcode C语言题解之第564题寻找最近的回文数

题目&#xff1a; 题解&#xff1a; #define MAX_STR_LEN 32 typedef unsigned long long ULL;void reverseStr(char * str) {int n strlen(str);for (int l 0, r n-1; l < r; l, r--) {char c str[l];str[l] str[r];str[r] c;} }ULL * getCandidates(const char * n…...

wsl虚拟机中的dockers容器访问不了物理主机

1 首先保证wsl虚拟机能够访问宿主机IP地址&#xff0c;wsl虚拟机通过vEthernet (WSL)的地址访问&#xff0c;着意味着容器也要通过此IP地址访问物理主机。 2 遇到的问题&#xff1a;wsl虚拟机中安装了docker&#xff0c;用在用到docker容器内的开发环境&#xff0c;但是虚拟机…...

Spark RDD 的宽依赖和窄依赖

通俗地理解 Spark RDD 的 宽依赖 和 窄依赖&#xff0c;可以通过以下比喻和解释&#xff1a; 1. 日常生活比喻 假设你在管理多个团队完成工作任务&#xff1a; 窄依赖&#xff1a;每个团队只需要关注自己的分工&#xff0c;完成自己的任务。例如&#xff0c;一个人将纸张折好&…...

二进制转十进制

解题思路分析 二进制转十进制原理&#xff1a;二进制数转换为十进制数的基本原理是按位权展开相加。对于一个二进制数&#xff0c;从右往左每一位的位权依次是将每一位上的数字&#xff08;0 或 1&#xff09;乘以其对应的位权&#xff0c;然后把所有结果相加&#xff0c;就得…...

深度学习:神经网络中的非线性激活的使用

深度学习&#xff1a;神经网络中的非线性激活的使用 在神经网络中&#xff0c;非线性激活函数是至关重要的组件&#xff0c;它们使网络能够捕捉和模拟输入数据中的复杂非线性关系。这些激活函数的主要任务是帮助网络解决那些无法通过简单的线性操作&#xff08;如权重相乘和偏…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例&#xff1a; 某医药分销企业&#xff0c;主要经营各类药品的批发与零售。由于药品的特殊性&#xff0c;效期管理至关重要&#xff0c;但该企业一直面临效期问题的困扰。在未使用WMS系统之前&#xff0c;其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...

《Offer来了:Java面试核心知识点精讲》大纲

文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

ubuntu中安装conda的后遗症

缘由: 在编译rk3588的sdk时&#xff0c;遇到编译buildroot失败&#xff0c;提示如下&#xff1a; 提示缺失expect&#xff0c;但是实测相关工具是在的&#xff0c;如下显示&#xff1a; 然后查找借助各个ai工具&#xff0c;重新安装相关的工具&#xff0c;依然无解。 解决&am…...