【Python刷题】广度优先搜索相关问题

题目描述
小A与小B

算法思路
小A一次移动一步,但有八个方向,小B一次移动两步,只有四个方向,要求小A和小B最早的相遇时间。用两个队列分别记录下小A和小B每一步可以走到的位置,通过一个简单的bfs就能找到这些位置并存到他们各自的队列中。在一个while循环中调用这个bfs函数,小A调用一次,小B调用两次。用一个矩阵v来标记小A和小B访问过的位置,一但发现其中一者当前走到的位置已经被另一者访问过就退出循环并且输出步数。否则就在bfs里将当前能到达的为止从队列中取出然后更新成下一步能到达的位置。如果最终两个队列都空了还是没能相遇就结束while循环然后返回-1
代码实现
import collections
# 读取迷宫的行数和列数
n, m = map(int, input().split())
# 初始化队列,q[0]用于存储小A的位置,q[1]用于存储小B的位置
q = [collections.deque() for i in range(2)]
# 初始化迷宫的矩阵,g[i][j]存储迷宫中(i, j)位置的字符
g = [[''] * m for i in range(n)]
# 初始化访问标记矩阵,v[0][i][j]和v[1][i][j]分别表示小A和小B是否访问过(i, j)位置
v = [[[0] * m for i in range(n)] for j in range(2)]
# 读取迷宫数据并初始化队列
for i in range(n):r = [x for x in input().split()]for j in range(m):# 如果当前位置是小A的位置,标记为已访问并将位置加入q[0]if r[j] == 'C':v[0][i][j] = 1q[0].append([i, j])# 如果当前位置是小B的位置,标记为已访问并将位置加入q[1]if r[j] == 'D':v[1][i][j] = 1q[1].append([i, j])# 存储当前位置的字符到迷宫矩阵g[i][j] = r[j]
# 定义小A的8个移动方向和小B的4个移动方向
dis = [[1, 0], [-1, 0], [0, 1], [0, -1], [1, 1], [1, -1], [-1, 1], [-1, -1]]
# 主函数,返回最早相遇的时间或-1(无法相遇)
def sol():ans = 0 # 初始化步数计数器while len(q[0]) or len(q[1]): # 只要有一个队列不为空就继续循环ans += 1 # 每轮循环增加一步# 首先扩展小A的移动if bfs(0): return ans # 如果小A和B相遇,返回当前步数# 然后扩展小B的第一次移动if bfs(1): return ans # 如果小A和B相遇,返回当前步数# 最后扩展小B的第二次移动if bfs(1): return ans # 如果小A和B相遇,返回当前步数return -1 # 如果没有相遇且队列为空,返回-1# 广度优先搜索函数,t=0表示小A,t=1表示小B
def bfs(t):for _ in range(len(q[t])): # 遍历当前队列中的所有元素i, j = q[t].popleft() # 取出队列中的一个点for k in range(4 if t else 8): # 根据t的值选择4个方向(小B)或8个方向(小A)dx, dy = dis[k] # 获取移动方向的坐标变化量x, y = i + dx, j + dy # 计算新的坐标# 如果新坐标超出迷宫范围、已访问过或遇到障碍物,跳过if x < 0 or x >= n or y < 0 or y >= m or v[t][x][y] or g[x][y] == '#': continue# 如果新坐标已经被另一种类型的点访问过(小A和小B相遇),返回1if v[1 - t][x][y]: return 1v[t][x][y] = 1 # 标记新坐标为已访问q[t].append([x, y]) # 将新坐标加入队列,以便继续扩展return 0 # 如果当前队列中所有元素都扩展完毕且没有找到交集,返回0
# 调用主函数获取结果
ans = sol()
# 输出结果
if ans == -1:print('NO') # 无法相遇
else:print('YES') # 可以相遇print(ans) # 输出最短相遇时间
相关文章:
【Python刷题】广度优先搜索相关问题
题目描述 小A与小B 算法思路 小A一次移动一步,但有八个方向,小B一次移动两步,只有四个方向,要求小A和小B最早的相遇时间。用两个队列分别记录下小A和小B每一步可以走到的位置,通过一个简单的bfs就能找到这些位置并…...
竞赛思享会 | 2024年第十届数维杯国际数学建模挑战赛D题【代码+演示】
Hello,这里是Easy数模!以下idea仅供参考,无偿分享! 题目背景 本题旨在通过对中国特定城市的房产、人口、经济、服务设施等数据进行分析,评估其在应对人口老龄化、负增长趋势和极端气候事件中的韧性与可持续发展能力。…...
早期超大规模语言模型的尝试——BLOOM模型论文解读,附使用MindSpore和MindNLP的模型和实验复现
背景 预训练语言模型已经成为了现代自然语言处理pipeline中的基石,因为其在少量的标注数据上产生更好的结果。随着ELMo、ULMFiT、GPT和BERT的开发,使用预训练模型在下游任务上微调的范式被广泛使用。随后发现预训练语言模型在没有任何额外训练的情况下任…...
二分查找题目:有序数组中的单一元素
文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:有序数组中的单一元素 出处:540. 有序数组中的单一元素 难度 4 级 题目描述 要求 给定一个仅由整数…...
springboot基于Android的华蓥山旅游导航系统
摘 要 华蓥山旅游导航系统是一款专为华蓥山景区设计的智能导览应用,旨在为用户提供便捷的旅游信息服务。该系统通过整合华蓥山的地理信息、景点介绍、交通状况等数据,实现了对景区的全面覆盖。用户可以通过该系统获取实时的旅游资讯、交流论坛、地图等。…...
面向对象编程(OOP)深度解析:思想、原则与应用
🚀 作者 :“码上有前” 🚀 文章简介 :Java 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 面向对象编程(OOP)深度解析:思想、原则与应用 一、面向对象编程的基本…...
iPhone 17 Air看点汇总:薄至6mm 刷新苹果轻薄纪录
我们姑且将这款iPhone 17序列的超薄SKU称为“iPhone 17 Air”,Jeff Pu在报告中提到,我同意最近关于 iPhone 17超薄机型采用6 毫米厚度超薄设计的传言。 如果这一测量结果被证明是准确的,那么将有几个值得注意的方面。 首先,iPhone…...
「OpenCV交叉编译」ubuntu to arm64
Ubuntu x86_64 交叉编译OpenCV 为 arm64OpenCV4.5.5、cmake version 3.16.3交叉编译器 gcc-arm-10.2-2020.11-x86_64-aarch64-none-linux-gnu 可在arm或linaro官网下载所需版本,本文的交叉编译器可点击链接跳转下载 Downloads | GNU-A Downloads – Arm Developer L…...
Stable Diffusion的解读(二)
Stable Diffusion的解读(二) 文章目录 Stable Diffusion的解读(二)摘要Abstract一、机器学习部分1. 算法梳理1.1 LDM采样算法1.2 U-Net结构组成 2. Stable Diffusion 官方 GitHub 仓库2.1 安装2.2 主函数2.3 DDIM采样器2.4 Unet 3…...
amd显卡和nVidia显卡哪个好 amd和英伟达的区别介绍
AMD和英伟达是目前市场上最主要的两大显卡品牌,它们各有自己的特点和优势,也有不同的适用场景和用户群体。那么,AMD显卡和英伟达显卡到底哪个好?它们之间有什么区别?我们又该如何选择呢?本文将从以下几个方…...
软件测试—— Selenium 常用函数(一)
前一篇文章:软件测试 —— 自动化基础-CSDN博客 目录 前言 一、窗口 1.屏幕截图 2.切换窗口 3.窗口设置大小 4.关闭窗口 二、等待 1.等待意义 2.强制等待 3.隐式等待 4.显式等待 总结 前言 在前一篇文章中,我们介绍了自动化的一些基础知识&a…...
为什么verilog中递归函数需要定义为automatic?
直接上代码 module automatic_tb;reg [7:0] value;initial begin #0 value < 8d5;#10 $display("result of automatic: %0d", factor_automatic(value));$display("result of static: %0d", factor_static(value));#50 $stop; endfunction reg[7:0] fa…...
23种设计模式-状态(State)设计模式
文章目录 一.什么是状态模式?二.状态模式的结构三.状态模式的应用场景四.状态模式的优缺点五.状态模式的C实现六.状态模式的JAVA实现七.代码解释八.总结 类图: 状态设计模式类图 一.什么是状态模式? 状态模式(State Pattern&…...
EventListener与EventBus
EventListener JDK JDK1.1开始就提供EventListener,一个标记接口,源码如下: /*** A tagging interface that all event listener interfaces must extend.*/ public interface EventListener { }JDK提供的java.util.EventObject࿱…...
Facebook为什么注册失败了?该怎么解决?
有时候用户在尝试注册Facebook账号时可能会遇到各种问题,导致注册失败或遇到困难。小编会为大家分析Facebook注册失败的可能原因,并提供解决方法,帮助大家顺利完成注册流程。 一、Facebook注册失败的可能原因 1. 账号信息问题: …...
前端数据可视化思路及实现案例
目录 一、前端数据可视化思路 (一)明确数据与目标 (二)选择合适的可视化图表类型 (三)数据与图表的绑定及交互设计 (四)页面布局与样式设计 二、具体案例:使用 Ech…...
【DVWA】Brute Force暴力破解实战
问尔辈 何等样人 自摸心头 再来求我;若汝能 克存忠孝 持身正直 不拜何妨 1.Brute Force(Low) 相关的代码分析 if( isset( $_GET[ Login ] ) ) {// Get username$user $_GET[ username ];// Check the database$query "SELECT * FROM users WHERE user $…...
23种设计模式速记法
前言 在软件开发的过程中,设计模式作为解决常见问题的通用模板,一直是开发者的重要工具。尤其是在面临复杂系统架构和需求变化时,设计模式不仅能够提升代码的可复用性和扩展性,还能大大提高团队之间的协作效率。然而,…...
第7章硬件测试-7.3 功能测试
7.3 功能测试 7.3.1 整机规格测试7.3.2 整机试装测试7.3.3 DFX测试 功能测试包括整机规格、整机试装和整机功能测试,是整机结构和业务相关的测试。 7.3.1 整机规格测试 整机规格测试包括尺寸、重量、温度、功耗等数据。这些测试数据与设计规格进行比对和校验&…...
动态规划子数组系列一>等差数列划分
题目: 解析: 代码: public int numberOfArithmeticSlices(int[] nums) {int n nums.length;int[] dp new int[n];int ret 0;for(int i 2; i < n; i){dp[i] nums[i] - nums[i-1] nums[i-1] - nums[i-2] ? dp[i-1]1 : 0;ret dp[i…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
Matlab实现任意伪彩色图像可视化显示
Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中,如何展示好看的实验结果图像非常重要!!! 1、灰度原始图像 灰度图像每个像素点只有一个数值,代表该点的亮度(或…...
【java面试】微服务篇
【java面试】微服务篇 一、总体框架二、Springcloud(一)Springcloud五大组件(二)服务注册和发现1、Eureka2、Nacos (三)负载均衡1、Ribbon负载均衡流程2、Ribbon负载均衡策略3、自定义负载均衡策略4、总结 …...
CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)
漏洞概述 漏洞名称:Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号:CVE-2023-25194 CVSS评分:8.8 影响版本:Apache Kafka 2.3.0 - 3.3.2 修复版本:≥ 3.4.0 漏洞类型:反序列化导致的远程代…...
