当前位置: 首页 > news >正文

Stable Diffusion核心网络结构——CLIP Text Encoder

🌺系列文章推荐🌺

扩散模型系列文章正在持续的更新,更新节奏如下,先更新SD模型讲解,再更新相关的微调方法文章,敬请期待!!!(本文及其之前的文章均已更新

 SD模型原理:

  1. Stable Diffusion概要讲解
  2. Stable diffusion详细讲解
  3. Stable Diffusion的加噪和去噪详解
  4. Diffusion Model
  5. Stable Diffusion核心网络结构——VAE
  6. Stable Diffusion核心网络结构——CLIP Text Encoder
  7. Stable Diffusion核心网络结构——U-Net
  8. Stable Diffusion中U-Net的前世今生与核心知识
  9. SD模型性能测评
  10. Stable Diffusion经典应用场景
  11. SDXL的优化工作

微调方法原理:

  1. DreamBooth
  2. LoRA
  3. LORA及其变种介绍
  4. ControlNet
  5. ControlNet文章解读
  6. Textual Inversion 和 Embedding fine-tuning

​​​ 

Stable Diffusion核心网络结构

摘录来源:https://zhuanlan.zhihu.com/p/632809634

目录

Stable Diffusion核心网络结构

SD模型整体架构初识

CLIP Text Encoder模型

微调文本映射

原始CLIP、BLIP


SD模型整体架构初识

Stable Diffusion模型整体上是一个End-to-End模型,主要由VAE(变分自编码器,Variational Auto-Encoder),U-Net以及CLIP Text Encoder三个核心组件构成。

本文主要介绍CLIP Text Encoder,VAE和U-Net请参考:

  1. Stable Diffusion核心网络结构——VAE
  2. Stable Diffusion核心网络结构——U-Net

在FP16精度下Stable Diffusion模型大小2G(FP32:4G),其中U-Net大小1.6G,VAE模型大小160M以及CLIP Text Encoder模型大小235M(约123M参数)。其中U-Net结构包含约860M参数,FP32精度下大小为3.4G左右。

​​​​​
Stable Diffusion整体架构图

CLIP Text Encoder模型

作为文生图模型,Stable Diffusion中的文本编码模块直接决定了语义信息的优良程度,从而影响到最后图片生成的质量和与文本的一致性。

在这里,多模态领域的神器——CLIP(Contrastive Language-Image Pre-training),跨过了周期,从传统深度学习时代进入AIGC时代,成为了SD系列模型中文本和图像之间的“桥梁”并且从某种程度上讲,正是因为CLIP模型的前置出现,加速推动了AI绘画领域的繁荣

那么,什么是CLIP呢?CLIP有哪些优良的性质呢?为什么是CLIP呢?

首先,CLIP模型是一个基于对比学习的多模态模型,主要包含Text Encoder和Image Encoder两个模型。其中Text Encoder用来提取文本的特征,可以使用NLP中常用的text transformer模型作为Text Encoder;而Image Encoder主要用来提取图像的特征,可以使用CNN/Vision transformer模型(ResNet和ViT等)作为Image Encoder。与此同时,他直接使用4亿个图片与标签文本对数据集进行训练,来学习图片与本文内容的对应关系。

与U-Net的Encoder和Decoder一样,CLIP的Text Encoder和Image Encoder也能非常灵活的切换,庞大图片与标签文本数据的预训练赋予了CLIP强大的zero-shot分类能力。

灵活的结构,简洁的思想,让CLIP不仅仅是个模型,也给我们一个很好的借鉴,往往伟大的产品都是大道至简的。更重要的是,CLIP把自然语言领域的抽象概念带到了计算机视觉领域。

​​​
CLIP模型训练使用的图片-文本对数据

​CLIP在训练时,从训练集中随机取出一张图片和标签文本,接着CLIP模型的任务主要是通过Text Encoder和Image Encoder分别将标签文本和图片提取embedding向量,然后用余弦相似度(cosine similarity)来比较两个embedding向量的相似性,以判断随机抽取的标签文本和图片是否匹配,并进行梯度反向传播,不断进行优化训练。

​​​
CLIP模型训练示意图

​上面讲了Batch为1时的情况,当我们把训练的Batch提高到 N 时,其实整体的训练流程是不变的。只是现在CLIP模型需要将N个标签文本和N个图片的两两组合预测出N^2个可能的文本-图片对的余弦相似性,即下图所示的矩阵。这里共有N个正样本,即真正匹配的文本和图片(矩阵中的对角线元素),而剩余的N^2−N个文本-图片对为负样本,这时CLIP模型的训练目标就是最大化N个正样本的余弦相似性,同时最小化N^2−N个负样本的余弦相似性

​​​
Batch为N时的CLIP训练示意图

完成CLIP的训练后,输入配对的图片和标签文本,则Text Encoder和Image Encoder可以输出相似的embedding向量,计算余弦相似度就可以得到接近1的结果。同时对于不匹配的图片和标签文本,输出的embedding向量计算余弦相似度则会接近0

就这样,CLIP成为了计算机视觉和自然语言处理自然语言处理这两大AI方向的“桥梁”,从此AI领域的多模态应用有了经典的基石模型。

上面我们讲到CLIP模型主要包含Text Encoder和Image Encoder两个部分,在Stable Diffusion中主要使用了Text Encoder部分。CLIP Text Encoder模型将输入的文本Prompt进行编码,转换成Text Embeddings(文本的语义信息),通过U-Net网络的CrossAttention模块嵌入Stable Diffusion中作为Condition条件,对生成图像的内容进行一定程度上的控制与引导,目前SD模型使用的是CLIP ViT-L/14CLIP ViT-L/14中的Text Encoder模型。

CLIP ViT-L/14 中的Text Encoder是只包含Transformer结构的模型,一共由12个CLIPEncoderLayer模块组成,模型参数大小是123M,具体CLIP Text Encoder模型结构如下图所示。其中特征维度为768,token数量是77,所以输出的Text Embeddings的维度为77x768

CLIPEncoderLayer((self_attn): CLIPAttention((k_proj): Linear(in_features=768, out_features=768, bias=True)(v_proj): Linear(in_features=768, out_features=768, bias=True)(q_proj): Linear(in_features=768, out_features=768, bias=True)(out_proj): Linear(in_features=768, out_features=768, bias=True))(layer_norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)(mlp): CLIPMLP((activation_fn): QuickGELUActivation()(fc1): Linear(in_features=768, out_features=3072, bias=True)(fc2): Linear(in_features=3072, out_features=768, bias=True))(layer_norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True))

下图是Rocky梳理的Stable Diffusion CLIP Text Encoder的完整结构图,大家可以感受一下其魅力,看着这个完整结构图学习Stable Diffusion CLIP Text Encoder部分,相信大家脑海中的思路也会更加清晰:

​​​
Stable Diffusion CLIP Text Encoder完整结构图

一般来说,我们提取CLIP Text Encoder模型最后一层特征作为CrossAttention模块的输入,但是开源社区的不断实践为我们总结了如下经验:当我们生成二次元内容时,可以选择提取CLIP Text Encoder模型倒数第二层特征;当我们生成写实场景内容时,可以选择提取CLIP Text Encoder模型最后一层的特征。这让Rocky想起了SRGAN以及感知损失,其也是提取了VGG网络的中间层特征才达到了最好的效果,AI领域的“传承”与共性,往往在这些不经意间,让人感到人工智能的魅力与美妙。

由于CLIP训练时所采用的最大Token数是77,所以在SD模型进行前向推理时,当输入Prompt的Token数量超过77时,将通过Clip操作拉回77x768,而如果Token数不足77则会使用padding操作得到77x768。如果说全卷积网络的设计让图像输入尺寸不再受限,那么CLIP的这个设置就让输入的文本长度不再受限(可以是空文本)。无论是非常长的文本,还是空文本,最后都将得到一样维度的特征矩阵。

同时在SD模型的训练中,一般来说CLIP的整体性能是足够支撑我们的下游细分任务的,所以CLIP Text Encoder模型参数是冻结的,我们不需要对其重新训练

【如果我们想要一个新的embeeding词对应新特征向量,可以进行Textual Inversion 或 embedding fine-tuning微调】

注意:

Textual Inversionembedding fine-tuning 微调的部分并不是 Stable Diffusion 模型中的 CLIP Text Encoder,而是训练新的词汇嵌入(embedding),这些嵌入会被用在 CLIP Text Encoder 的输入层,但CLIP Text Encoder 本身的参数是冻结的,并不会在这个过程中被调整。

在AIGC时代,我们使用语言文字表达的创意与想法,可以轻松让Stable Diffusion生成出一幅幅精美绝伦、创意十足、飞速破圈的图片。而这些背后,都有CLIP的功劳,CLIP不仅仅连接了文本和图像,也连接了AI行业与千万个需要生成图片和视频的行业,AI绘画的ToC普惠如此之强,Rocky认为CLIP就是那个“隐形冠军”

微调文本映射

Textual Inversion 和 embedding fine-tuning

原始CLIP、BLIP

参考:万字长文解读深度学习——多模态模型CLIP、BLIP、ViLT-CSDN博客

 

相关文章:

Stable Diffusion核心网络结构——CLIP Text Encoder

🌺系列文章推荐🌺 扩散模型系列文章正在持续的更新,更新节奏如下,先更新SD模型讲解,再更新相关的微调方法文章,敬请期待!!!(本文及其之前的文章均已更新&…...

C语言-11-18笔记

1.C语言数据类型 类型存储大小值范围char1 字节-128 到 127 或 0 到 255unsigned char1 字节0 到 255signed char1 字节-128 到 127int2 或 4 字节-32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647unsigned int2 或 4 字节0 到 65,535 或 0 到 4,294,967,295short2 字节…...

数据结构_图的遍历

深度优先搜索遍历 遍历思想 邻接矩阵上的遍历算法 void Map::DFSTraverse() {int i, v;for (i 0; i < MaxLen; i){visited[i] false;}for (i 0; i < Vexnum; i){// 如果顶点未访问&#xff0c;则进行深度优先搜索if (visited[i] false){DFS(i);}}cout << endl…...

设计LRU缓存

LRU缓存 LRU缓存的实现思路LRU缓存的操作C11 STL实现LRU缓存自行设计双向链表 哈希表 LRU&#xff08;Least Recently Used&#xff0c;最近最少使用&#xff09;缓存是一种常见的缓存淘汰算法&#xff0c;其基本思想是&#xff1a;当缓存空间已满时&#xff0c;移除最近最少使…...

python中的base64使用小笑话

在使用base64的时候将本地的图片转换为base64 代码如下&#xff0c;代码绝对正确 import base64 def image_to_data_uri(image_path):with open(image_path, rb) as image_file:image_data base64.b64encode(image_file.read()).decode(utf-8)file_extension image_path.sp…...

Python之time时间库

time时间库 概述获取当前时间time库datetime库区别 时间元组处理获取时间元组的各个部分时间戳和时间元组的转换 格式化时间格式化时间解析时间格式符号说明 暂停程序计时操作简单计时高精度计时计时器类的实现 UTC时间操作time库datetime库 概述 time是Python标准库中的一个模…...

Easyexcel(4-模板文件)

相关文章链接 Easyexcel&#xff08;1-注解使用&#xff09;Easyexcel&#xff08;2-文件读取&#xff09;Easyexcel&#xff08;3-文件导出&#xff09;Easyexcel&#xff08;4-模板文件&#xff09; 文件导出 获取 resources 目录下的文件&#xff0c;使用 withTemplate 获…...

国产linux系统(银河麒麟,统信uos)使用 PageOffice 动态生成word文件

PageOffice 国产版 &#xff1a;支持信创系统&#xff0c;支持银河麒麟V10和统信UOS&#xff0c;支持X86&#xff08;intel、兆芯、海光等&#xff09;、ARM&#xff08;飞腾、鲲鹏、麒麟等&#xff09;、龙芯&#xff08;LoogArch&#xff09;芯片架构。 数据区域填充文本 数…...

Window11+annie 视频下载器安装

一、ffmpeg环境的配置 下载annie之前需要先配置ffmpeg视频解码器。 网址下载地址 https://ffmpeg.org/download.html1、在网址中选择window版本 2、点击后选择该版本 3、下载完成后对压缩包进行解压&#xff0c;后进行环境的配置 &#xff08;1&#xff09;压缩包解压&#…...

SAP GR(Group Reporting)配置篇(七)

1.7、合并处理的配置 1.7.1 定义方法 菜单路径 组报表的SAP S4HANA >合并处理的配置>定义方法 事务代码 SPI4...

共建智能软件开发联合实验室,怿星科技助力东风柳汽加速智能化技术创新

11月14日&#xff0c;以“奋进70载&#xff0c;智创新纪元”为主题的2024东风柳汽第二届科技周在柳州盛大开幕&#xff0c;吸引了来自全国的汽车行业嘉宾、技术专家齐聚一堂&#xff0c;共襄盛举&#xff0c;一同探寻如何凭借 “新技术、新实力” 这一关键契机&#xff0c;为新…...

优化表单交互:在 el-select 组件中嵌入表格显示选项

介绍了一种通过 el-select 插槽实现表格样式数据展示的方案&#xff0c;可更直观地辅助用户选择。支持列配置、行数据绑定及自定义搜索&#xff0c;简洁高效&#xff0c;适用于复杂选择场景。完整代码见GitHub 仓库。 背景 在进行业务开发选择订单时&#xff0c;如果单纯的根…...

每日一题 LCR 079. 子集

LCR 079. 子集 主要应该考虑遍历的顺序 class Solution { public:vector<vector<int>> subsets(vector<int>& nums) {vector<vector<int>> ans;vector<int> temp;dfs(nums,0,temp,ans);return ans;}void dfs(vector<int> &…...

cocos creator 3.8 Node学习 3

//在Ts、js中 this指向当前的这个组件实例 //this下的一个数据成员node&#xff0c;指向组件实例化的这个节点 //同样也可以根据节点找到挂载的所有组件 //this.node 指向当前脚本挂载的节点//子节点与父节点的关系 // Node.parent是一个Node,Node.children是一个Node[] // th…...

微信小程序底部button,小米手机偶现布局错误的bug

预期结果&#xff1a;某button fixed 到页面底部&#xff0c;进入该页面时&#xff0c;正常显示button 实际结果&#xff1a;小米13pro&#xff0c;首次进入页面&#xff0c;button不显示。再次进入时&#xff0c;则正常展示 左侧为小米手机第一次进入。 遇到bug的解决思路&am…...

【计组】复习题

冯诺依曼型计算机的主要设计思想是什么&#xff1f;它包括哪些主要组成部分&#xff1f; 主要设计思想&#xff1a; ①采用二进制表示数据和指令&#xff0c;指令由操作码和地址码组成。 ②存储程序&#xff0c;程序控制&#xff1a;将程序和数据存放在存储器中&#xff0c;计算…...

Apache Maven 标准文件目录布局

Apache Maven 采用了一套标准的目录布局来组织项目文件。这种布局提供了一种结构化和一致的方式来管理项目资源&#xff0c;使得开发者更容易导航和维护项目。理解和使用标准目录布局对于有效的Maven项目管理至关重要。本文将探讨Maven标准目录布局的关键组成部分&#xff0c;并…...

Android 功耗分析(底层篇)

最近在网上发现关于功耗分析系列的文章很少&#xff0c;介绍详细的更少&#xff0c;于是便想记录总结一下功耗分析的相关知识&#xff0c;有不对的地方希望大家多指出&#xff0c;互相学习。本系列分为底层篇和上层篇。 大概从基础知识&#xff0c;测试手法&#xff0c;以及案例…...

【Xbim+C#】创建圆盘扫掠IfcSweptDiskSolid

基础回顾 https://blog.csdn.net/liqian_ken/article/details/143867404 https://blog.csdn.net/liqian_ken/article/details/114851319 效果图 代码示例 在前文基础上&#xff0c;增加一个工具方法&#xff1a; public static IfcProductDefinitionShape CreateDiskSolidSha…...

IntelliJ+SpringBoot项目实战(四)--快速上手数据库开发

对于新手学习SpringBoot开发&#xff0c;可能最急迫的事情就是尽快掌握数据库的开发。目前数据库开发主要流行使用Mybatis和Mybatis Plus,不过这2个框架对于新手而言需要一定的时间掌握&#xff0c;如果快速上手数据库开发&#xff0c;可以先按照本文介绍的方式使用JdbcTemplat…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...