NLP论文速读(多伦多大学)|利用人类偏好校准来调整机器翻译的元指标
论文速读|MetaMetrics-MT: Tuning Meta-Metrics for Machine Translation via Human Preference Calibration
论文信息:

简介:
本文的背景是机器翻译(MT)任务的评估。在机器翻译领域,由于不同场景和语言对的需求差异,没有单一的评估指标能够普遍适用。现有的评估指标可能在一个任务中表现良好,但在另一个任务中可能就不适用。因此,依赖单一指标往往是不够的,需要将自动评估指标与人类评估对齐,以确保其有效性。此外,现有的多个评估指标之间可能因为模型和训练数据的差异而相关性不强,这影响了它们与人类评估的一致性和跨语言对的可靠性。因此,本文提出了一种新的方法,旨在通过贝叶斯优化和高斯过程(GP)来调整和优化现有的MT评估指标,使其更贴近人类偏好。
论文方法:
本文提出的方法是METAMETRICS-MT,一个创新的评估指标,它通过贝叶斯优化和高斯过程来优化现有MT评估指标的相关性。
具体步骤如下:
多指标融合:METAMETRICS-MT结合了多个不同的评估指标,每个指标都被赋予特定的权重,以优化整体性能。这些指标包括基于词汇和基于语义的指标,它们被整合在一起,以形成一个综合的评估分数。
贝叶斯优化:使用贝叶斯优化来确定最佳的权重集合,这些权重最大化了评估分数与人类评估分数之间的相关性。贝叶斯优化通过构建目标函数的概率模型,平衡了新区域的探索和已知有前景区域的利用。
高斯过程(GP):GP被用作贝叶斯优化中的代理模型,它假设变量的多变量高斯分布,并随着观测数据的增加而变得更加精确,从而帮助算法更有效地识别权重空间中的有前景区域。
论文实验:

论文中提到了两个版本的METAMETRICS-MT:一个是基于参考的(Reference-based),另一个是无需参考的(Reference-free)。
实验使用了WMT24度量共享任务数据集,并且使用了Kendall’s τ相关性作为评估指标。
在参考基础设置中,使用了包括MetricX-23的不同变体、BERTScore、YISI-1、BLEURT、COMET-22和XCOMET-XL等在内的多个评估指标。
在无参考设置中,使用了包括CometKiwi的不同变体、GEMBA-MQM和MetricX-23-QE等在内的多个评估指标。
Table 2展示了不同评估指标在WMT24共享任务中的表现,包括系统级软成对排名准确率(sys SPA)、段级成对排名准确率(seg acc-t)和系统级、段级平均相关性(avg. corr)。
论文中的METAMETRICS-MT在参考基础设置下的表现超过了所有其他基线,特别是在系统级和段级平均相关性方面,METAMETRICS-MT(Hybrid)变体在所有变体中表现最佳。
论文链接:
https://arxiv.org/abs/2411.00390
原文来自:
NLP论文速读(多伦多大学)|利用人类偏好校准来调整机器翻译的元指标
相关文章:
NLP论文速读(多伦多大学)|利用人类偏好校准来调整机器翻译的元指标
论文速读|MetaMetrics-MT: Tuning Meta-Metrics for Machine Translation via Human Preference Calibration 论文信息: 简介: 本文的背景是机器翻译(MT)任务的评估。在机器翻译领域,由于不同场景和语言对的需求差异&a…...
MyBatis——#{} 和 ${} 的区别和动态 SQL
1. #{} 和 ${} 的区别 为了方便,接下来使用注解方式来演示: #{} 的 SQL 语句中的参数是用过 ? 来起到类似于占位符的作用,而 ${} 是直接进行参数替换,这种直接替换的即时 SQL 就可能会出现一个问题 当传入一个字符串时ÿ…...
解决sql字符串
根据你描述的情况以及调试截图中的内容,我可以确认你的 sql 字符串在 Python 中由于转义字符的问题,可能导致在 Oracle 中运行时出错。 以下是一些排查和修改建议: 问题分析 转义字符问题: 在调试界面中可以看到,DEC…...
深度解析:Android APP集成与拉起微信小程序开发全攻略
目录 一、背景以及功能介绍 二、Android开发示例 2.1 下载 SDK 2.2 调用接口 2.3 获取小程序原始Id 2.4 报错提示:bad_param 2.4.1 错误日志 2.4.2 解决方案 相关推荐 一、背景以及功能介绍 需求:产品经理需要APP跳转到公司的小程序(最好指定页…...
Leetcode 被围绕的区域
算法思想(解题思路): 这道题的核心是 将所有被边界包围的 O 保留下来,而将其他被围绕的 O 转换为 X。为了实现这一目标,我们可以分三步完成: 第一步:标记边界及其相连的 O 为特殊标记ÿ…...
ssm框架-spring-spring声明式事务
声明式事务概念 声明式事务是指使用注解或 XML 配置的方式来控制事务的提交和回滚。 开发者只需要添加配置即可, 具体事务的实现由第三方框架实现,避免我们直接进行事务操作! 使用声明式事务可以将事务的控制和业务逻辑分离开来,提…...
React第五节 组件三大属性之 props 用法详解
特性 a、props最好是仅限于父子上下级之间的数据传递,如果是祖孙多级之间传递属性,可以考虑使用props是否合适,或者使用替代方案 useContext() 或者使用 redux状态管理; b、props 中的属性是只读属性,如果想修改其中的…...
测评部署和管理 WordPress 最方便的面板
新版宝塔面板快速搭建WordPress新手教程 - 倚栏听风-Morii - 博客园 初学者使用1Panel面板快速搭建WordPress网站 - 倚栏听风-Morii - 博客园 可以看到,无论是宝塔还是1Panel,部署和管理WordPress都有些繁琐,而且还需要额外去配置Nginx和M…...
【系统分析师】-2024年11月论文-论DevOps开发
1、题目要求 论Devops及其应用。Devops是一组过程、方法与系统的统称,用于促进开发、技术运营和质量保障部门之间的沟通,协作与整合。它是一种重视软体开发人员和工厂运维技术人员之间沟通合作的模式。透过自动化“软件交付”和“架构变更”的流程&…...
算法【子数组最大累加和问题与扩展】
子数组最大累加和问题是一个非常经典的问题,也比较简单。但是扩展出的问题很多,在笔试、面试中特别常见,扩展出的问题很多非常有趣,解法也比较巧妙。 下面通过一些题目来加深理解。 题目一 测试链接:https://leetcode…...
小程序23-页面的跳转:navigation 组件详解
小程序中,如果需要进行跳转,需要使用 navigation 组件,常用属性: 1.url :当前小程序内的跳转链接 2.open-type:跳转方式 navigate:保留当前页面,跳转应用内的某个页面,…...
AI社媒引流工具:解锁智能化营销的新未来
在数字化浪潮的推动下,社交媒体成为品牌营销的主战场。然而,面对海量的用户数据和日益复杂的运营需求,传统营销方法显得力不从心。AI社媒引流王应运而生,帮助企业在多平台中精准触达目标用户,提升营销效率和效果。 1.…...
【Node.js】全面解析 Node.js 安全最佳实践:保护您的应用
Node.js 是一种强大的 JavaScript 运行时,广泛用于构建现代 Web 应用和 API。然而,由于其开放性和异步特性,Node.js 应用容易受到多种安全威胁的攻击,比如 SQL 注入、跨站脚本 (XSS) 和拒绝服务攻击 (DoS)。在本文中,我…...
Docker 用法详解
文章目录 一、Docker 快速入门1.1 部署 MYSQL1.2 命令解读: 二、Docker 基础2.1 常见命令:2.1.1 命令介绍:2.1.2 演示:2.1.3 命令别名: 2.2 数据卷:2.2.1 数据卷简介:2.2.2 数据卷命令ÿ…...
Python小游戏28——水果忍者
首先,你需要安装Pygame库。如果你还没有安装,可以使用以下命令进行安装: 【bash】 pip install pygame 《水果忍者》游戏代码: 【python】 import pygame import random import sys # 初始化Pygame pygame.init() # 设置屏幕尺寸 …...
Kafka Offset 自动提交和手动提交 - 漏消费与重复消费
目录 1. 引言 2. Offset 提交方式概述 2.1 自动提交 Offset 2.2 手动提交 Offset 3. 漏消费与重复消费的问题分析 3.1 自动提交模式下的漏消费和重复消费 漏消费 重复消费 3.2 手动提交模式下的漏消费和重复消费 漏消费 重复消费 4. 自动提交与手动提交的选择 4.1…...
Vue3父组件和子组件
子组件暴露方法给父组件,父组件传值 子组件 const editCalendar (value: string) > {console.log(获取父组件的值, value)};//暴露给外部调用defineExpose({editCalendar,}); 父组件 <template> <CalendarEdit ref"editRef" /> </…...
Linux 定时任务全解析
文章目录 一、Cron 服务1.1安装1.2配置文件格式1.3使用方法1.4系统级与用户级 Cron 任务区别 二、At 服务2.1安装2.2工作原理2.3使用方法 一、Cron 服务 1.1安装 在大多数 Linux 发行版中,Cron 服务通常已经默认安装。例如在 Ubuntu 系统中,可以通过以…...
XLNet——打破 BERT 局限的预训练语言模型
近年来,深度学习在自然语言处理(NLP)领域取得了革命性进展,其中 BERT 的出现标志着双向语言建模的强大能力。然而,BERT 也存在一些局限性,限制了其在生成任务中的表现。2019 年,由 Google 和 Ca…...
开源代码统计工具cloc的简单使用
一.背景 公司之前开发了个小系统,要去申请著作权,需要填写代码数量。应该怎么统计呢?搜索了一下,还是用开源工具cloc吧!我的操作系统是windows,代码主要是java项目和vue项目。 二.到哪里找 可以去官方下载…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
