当前位置: 首页 > news >正文

【通俗理解】隐变量的变分分布探索——从公式到应用

【通俗理解】隐变量的变分分布探索——从公式到应用

关键词提炼

#隐变量 #变分分布 #概率模型 #公式推导 #期望最大化 #机器学习 #变分贝叶斯 #隐马尔可夫模型

第一节:隐变量的变分分布的类比与核心概念【尽可能通俗】

隐变量的变分分布就像是一场“捉迷藏”游戏,在这场游戏中,我们试图通过观察到的线索(即观测数据)来推测那些隐藏起来的小伙伴(即隐变量)的位置和状态。
变分分布,就是我们在这场游戏中,根据已有线索和假设,对隐变量可能状态的猜测和描述。在这里插入图片描述

第二节:隐变量的变分分布的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
隐变量Z在概率模型中,无法直接观测到的变量,但影响观测数据X的分布。像是藏在盒子里的神秘礼物,我们看不到它,但能感受到它的存在。
变分分布q(Z)对隐变量Z的分布进行的一种估计或猜测,用于近似真实的后验分布p(Z|X)。像是我们根据线索,对隐变量位置的一种猜测和描述。
期望最大化(EM)一种迭代算法,用于在存在隐变量的情况下,估计模型参数。像是我们通过不断调整猜测,来逐渐接近隐变量的真实状态。

2.2 优势与劣势

方面描述
优势能够处理含有隐变量的复杂概率模型,提供对隐变量分布的估计,进而用于模型推断和预测。
劣势变分分布的准确性依赖于模型的假设和观测数据的充分性,可能存在估计偏差。

2.3 与机器学习的类比

隐变量的变分分布在机器学习中扮演着“侦探”的角色,它通过分析观测数据中的线索,来推测那些隐藏在背后的变量和状态,为模型的推断和预测提供有力支持。

第三节:公式探索与推演运算【重点在推导】

3.1 基本公式

变分贝叶斯方法中,我们常用KL散度来衡量变分分布q(Z)与真实后验分布p(Z|X)之间的差异,并试图最小化这个差异:

KL ( q ( Z ) ∥ p ( Z ∣ X ) ) = E q ( Z ) [ log ⁡ q ( Z ) − log ⁡ p ( Z ∣ X ) ] \text{KL}(q(Z) \| p(Z|X)) = \mathbb{E}_{q(Z)}[\log q(Z) - \log p(Z|X)] KL(q(Z)p(ZX))=Eq(Z)[logq(Z)logp(ZX)]

由于p(Z|X)难以直接计算,我们通常通过最大化证据下界(ELBO)来间接优化KL散度:

ELBO = E q ( Z ) [ log ⁡ p ( X , Z ) − log ⁡ q ( Z ) ] \text{ELBO} = \mathbb{E}_{q(Z)}[\log p(X, Z) - \log q(Z)] ELBO=Eq(Z)[logp(X,Z)logq(Z)]

3.2 具体实例与推演

考虑一个简单的隐马尔可夫模型,其中隐变量Z表示状态序列,观测数据X表示对应的观测序列。我们可以使用变分贝叶斯方法来估计隐变量的分布。

假设我们有以下公式:

  • 观测数据的似然函数: p ( X ∣ Z ) p(X|Z) p(XZ)
  • 隐变量的先验分布: p ( Z ) p(Z) p(Z)
  • 变分分布: q ( Z ) q(Z) q(Z)(通常选择为易于处理的分布,如高斯分布)

我们的目标是最大化ELBO:

ELBO = E q ( Z ) [ log ⁡ p ( X , Z ) − log ⁡ q ( Z ) ] \text{ELBO} = \mathbb{E}_{q(Z)}[\log p(X, Z) - \log q(Z)] ELBO=Eq(Z)[logp(X,Z)logq(Z)]

通过展开和化简,我们可以得到具体的优化目标,并通过梯度上升等算法来求解。

第四节:相似公式比对【重点在差异】

公式/模型共同点不同点
期望最大化(EM)都用于处理含有隐变量的模型参数估计。EM算法通过迭代求解期望步和最大化步来优化参数,而变分贝叶斯方法则通过优化变分分布来近似后验分布。
变分自编码器(VAE)都涉及到了变分分布的概念。VAE是一种生成模型,用于数据的生成和重构,而变分贝叶斯方法更侧重于模型推断和隐变量分布的估计。

第五节:核心代码与可视化【全英文的代码,标签label尤其需要是英文的!】

以下是一个使用变分贝叶斯方法进行隐变量估计的简化示例代码(假设已定义好相关函数和模型):

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.optimize import minimize# Define the log joint probability log p(X, Z)
def log_joint_probability(Z, X, model_params):# ... (implementation details)return log_p_XZ# Define the log variational distribution log q(Z)
def log_q(Z, variational_params):# ... (implementation details)return log_q_Z# Define the Evidence Lower Bound (ELBO) to maximize
def elbo(variational_params, X, model_params):# Sample from the variational distributionZ_samples = np.random.normal(loc=variational_params['mu'], scale=np.sqrt(variational_params['sigma']), size=(num_samples,))# Calculate the ELBOlog_p_XZ_samples = np.array([log_joint_probability(z, X, model_params) for z in Z_samples])log_q_Z_samples = np.array([log_q(z, variational_params) for z in Z_samples])elbo_value = np.mean(log_p_XZ_samples - log_q_Z_samples)return -elbo_value  # We need to minimize the negative ELBO# Initialize variational parameters
variational_params = {'mu': 0.0, 'sigma': 1.0}# Optimize the variational parameters to maximize the ELBO
result = minimize(elbo, variational_params, args=(X, model_params), method='L-BFGS-B')# Extract optimized parameters
optimized_mu = result.x[0]
optimized_sigma = np.exp(result.x[1])  # Ensure sigma is positive# Visualize the results
sns.set_theme(style="whitegrid")
plt.hist(Z_samples, bins=30, density=True, alpha=0.6, color='g', label='Variational Distribution q(Z)')
plt.axvline(optimized_mu, color='r', linestyle='dashed', linewidth=2, label=f'Optimized mu: {optimized_mu:.2f}')
plt.xlabel('Hidden Variable Z')
plt.ylabel('Density')
plt.title('Variational Distribution of Hidden Variable Z')
plt.legend()
plt.show()print(f"Optimized variational parameters: mu = {optimized_mu:.2f}, sigma = {optimized_sigma:.2f}")
输出内容描述
变分分布的直方图显示了优化后的变分分布q(Z)的形状。
优化后的变分参数提供了变分分布q(Z)的均值和标准差。
图表标题、x轴标签、y轴标签提供了图表的基本信息和说明。

参考文献

  1. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877. [【影响因子=4.0,统计学领域权威期刊】]内容概述:该论文对变分推断方法进行了全面回顾,介绍了其在统计学中的应用和优势,为理解和使用变分分布提供了理论基础。
  2. Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In International Conference on Learning Representations. [【会议论文,机器学习领域重要会议】]内容概述:该论文提出了变分自编码器(VAE)模型,通过变分推断方法来学习数据的生成过程,为变分分布在生成模型中的应用提供了重要思路。

相关文章:

【通俗理解】隐变量的变分分布探索——从公式到应用

【通俗理解】隐变量的变分分布探索——从公式到应用 关键词提炼 #隐变量 #变分分布 #概率模型 #公式推导 #期望最大化 #机器学习 #变分贝叶斯 #隐马尔可夫模型 第一节:隐变量的变分分布的类比与核心概念【尽可能通俗】 隐变量的变分分布就像是一场“捉迷藏”游戏…...

PyTorch 分布式并行计算

0. Abstract 使用 PyTorch 进行多卡训练, 最简单的是 DataParallel, 仅仅添加一两行代码就可以使模型在多张 GPU 上并行地计算. 但它是比较老的方法, 官方推荐使用新的 Distributed Data Parallel, 更加灵活与强大: 1. Distributed Data Parallel (DDP) 从一个简单的非分布…...

[cg] vulkan external_memory

最近在写硬件编码的代码,渲染器渲染出的RT需要给到编码器做硬编,有两种方法能做。 一是通过 map的方式,把显存里的数据读到cpu,拷贝一份cpu data给编码器,但这种方式会有内存拷贝的开销。所以,我们思考是否…...

如何使用Python代码实现给GPU预加热

如何使用Python代码实现给GPU预加热 一、引言二、使用深度学习框架进行预加热2.1 TensorFlow预加热2.2 PyTorch预加热三、使用CUDA进行预加热四、预加热的效果评估与优化五、结论与展望在高性能计算和深度学习领域,GPU(图形处理器)已经成为不可或缺的加速工具。然而,在实际…...

硬件知识 cadence16.6 原理图输出为pdf 网络名下划线偏移 (ORCAD)

1. cadence原理图输出为PDF网络名下划线偏移 生这种情况的原因 1. 设计的原理图图纸大小比正常的 A4图纸大。 2. 打印为PDF 的时候,打印机的设置有问题。 2.cadence原理图输出为 PDF网络名下划线偏移的情况 可以看到上图,网络名往上漂移。 3. 解决办法 …...

ffmpeg视频滤镜:提取缩略图-framestep

滤镜描述 官网地址 > FFmpeg Filters Documentation 这个滤镜会间隔N帧抽取一帧图片&#xff0c;因此这个可以用于设置视频的缩略图。总体上这个滤镜比较简单。 滤镜使用 滤镜参数 framestep AVOptions:step <int> ..FV....... set frame st…...

RecyclerView详解——(四)缓存复用机制

稍微看了下源码和部分文章&#xff0c;在此做个小小的总结 RecyclerView&#xff0c;意思为可回收的view&#xff0c;那么相对于listview&#xff0c;他的缓存复用肯定是一大优化。 具体而言&#xff0c;当一个列表项被移出屏幕后&#xff0c;RecyclerView并不会销毁其视图&a…...

进程 系统调用 中断

进程P通过执行系统调用从键盘接收一个字符的输入&#xff0c;已知此过程中与进程P相关的操作包括&#xff1a; ①将进程P插入就绪队列&#xff1b; ②将进程P插入阻塞队列&#xff1b; ③将字符从键盘控制器读入系统缓冲区&#xff1b; ④启动键盘中断处理程序&#xff1b; …...

演讲回顾丨杭州悦数 CTO 叶小萌:图数据库发展新航向——拥抱 GQL,融合 HTAP,携手 AI

本文为杭州悦数 CTO 叶小萌在“标准智能&#xff1a;新质生产力的原动力”悦数图数据库新产品发布会上的演讲回顾&#xff0c;主题为&#xff1a;《新标准、新期待&#xff1a;展望图数据库发展的关键方向》 各位嘉宾、悦数图数据库的用户以及线上的观众朋友们大家好&#xff0…...

Java安全—JNDI注入RMI服务LDAP服务JDK绕过

前言 上次讲到JNDI注入这个玩意&#xff0c;但是没有细讲&#xff0c;现在就给它详细地讲个明白。 JNDI注入 那什么是JNDI注入呢&#xff0c;JNDI全称为 Java Naming and Directory Interface&#xff08;Java命名和目录接口&#xff09;&#xff0c;是一组应用程序接口&…...

C++:设计模式-单例模式

单例模式&#xff08;Singleton Pattern&#xff09;是一种设计模式&#xff0c;确保一个类只有一个实例&#xff0c;并且提供全局访问点。实现单例模式的关键是防止类被多次实例化&#xff0c;且能够保证实例的唯一性。常见的实现手法包括懒汉式、饿汉式、线程安全的懒汉式等。…...

Softing工业将OPC UA信息建模集成到边缘应用和安全集成服务器中

Softing工业宣布将OPC UA&#xff08;统一架构&#xff09;信息建模集成到其边缘产品系列及安全集成服务器&#xff08;SIS&#xff09;中&#xff0c;这一技术进步使得在工业物联网&#xff08;IIoT&#xff09;应用中的数据集成、交换与控制更加无缝、有效。 &#xff08;OPC…...

WPF中如何让Textbox显示为一条直线

由于Textbox直接使用是一条直线 设置如下代码 可以让Textbox变为直线输入 <Style TargetType"TextBox"x:Key"UsernameTextBoxStyle"><Setter Property"Template"><Setter.Value><ControlTemplate TargetType"{x:Typ…...

VSCode汉化教程【简洁易懂】

我们安装完成后默认是英文界面。 找到插件选项卡&#xff0c;搜索“Chinese”&#xff0c;找到简体&#xff08;更具你的需要&#xff09;&#xff08;Microsoft提供&#xff09;Install。 安装完成后选择Change Language and Restart。...

跨平台多开账号防关联:轻松管理多个账号!

对于跨境电商、独立站以及社媒营销领域&#xff0c;如何高效管理多个账号、确保账号安全是企业面临的重大挑战。那么如何仅用一台电脑就能实现跨平台多开账号呢&#xff1f; 一、为什么需要跨平台多开账号并防关联&#xff1f; 1. 品牌推广&#xff1a;不同平台拥有不同的用户…...

DICOM图像处理:深入解析DICOM彩色图像中的Planar配置及其对像素数据解析处理的实现

引言 在DICOM(Digital Imaging and Communications in Medicine)标准中,彩色图像的存储与显示涉及多个关键属性,其中**Planar Configuration(平面配置)**属性(标签 (0028,0006))尤为重要。当遇到彩色DICOM图像在浏览时被错误地分割为9张小图,而实际应显示为一…...

jupyter notebook的 markdown相关技巧

目录 1 先选择为markdown类型 2 开关技巧 2.1 运行markdown 2.2 退出markdown显示效果 2.3 注意点&#xff1a;一定要 先选择为markdown类型 3 一些设置技巧 3.1 数学公式 3.2 制表 3.3 目录和列表 3.4 设置各种字体效果&#xff1a;加粗&#xff0c;斜体&#x…...

Linux连接网络的三种方式

Linux 连接网络的三种常见方式如下&#xff1a; 桥接模式 原理&#xff1a;虚拟网络接口与物理网络接口或另一个虚拟接口 “桥接”&#xff0c;形成逻辑上的网络交换机&#xff0c;使所有通过该桥接设备的数据包能被转发到桥接组中的所有接口&#xff0c;如同在一个局域网内…...

##继承##

继承的概念 #继承是新模板基于老模板的基础上修改而成&#xff0c;制作新模板时不需要重新开始制作&#xff0c;可以在老模板的基础上进行修改.(如手机版本的换代&#xff0c;软件的版本更新等) #程序也可以继承 继承的格式: class 继承模块&#xff08;被继承模块&#xff…...

2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略 完整参考论文(1)

摘要 近年来,中国宠物食品行业迅速增长,但面临复杂的国际形势和多变的市场环境,因此科学地分析和预测该行业的发展趋势至关重要。本研究通过构建多个机器学习与统计回归模型,量化分析中国宠物食品行业的关键驱动因素,预测未来宠物食品总产值和出口值。 在数据处理部分,…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...