当前位置: 首页 > news >正文

【通俗理解】隐变量的变分分布探索——从公式到应用

【通俗理解】隐变量的变分分布探索——从公式到应用

关键词提炼

#隐变量 #变分分布 #概率模型 #公式推导 #期望最大化 #机器学习 #变分贝叶斯 #隐马尔可夫模型

第一节:隐变量的变分分布的类比与核心概念【尽可能通俗】

隐变量的变分分布就像是一场“捉迷藏”游戏,在这场游戏中,我们试图通过观察到的线索(即观测数据)来推测那些隐藏起来的小伙伴(即隐变量)的位置和状态。
变分分布,就是我们在这场游戏中,根据已有线索和假设,对隐变量可能状态的猜测和描述。在这里插入图片描述

第二节:隐变量的变分分布的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
隐变量Z在概率模型中,无法直接观测到的变量,但影响观测数据X的分布。像是藏在盒子里的神秘礼物,我们看不到它,但能感受到它的存在。
变分分布q(Z)对隐变量Z的分布进行的一种估计或猜测,用于近似真实的后验分布p(Z|X)。像是我们根据线索,对隐变量位置的一种猜测和描述。
期望最大化(EM)一种迭代算法,用于在存在隐变量的情况下,估计模型参数。像是我们通过不断调整猜测,来逐渐接近隐变量的真实状态。

2.2 优势与劣势

方面描述
优势能够处理含有隐变量的复杂概率模型,提供对隐变量分布的估计,进而用于模型推断和预测。
劣势变分分布的准确性依赖于模型的假设和观测数据的充分性,可能存在估计偏差。

2.3 与机器学习的类比

隐变量的变分分布在机器学习中扮演着“侦探”的角色,它通过分析观测数据中的线索,来推测那些隐藏在背后的变量和状态,为模型的推断和预测提供有力支持。

第三节:公式探索与推演运算【重点在推导】

3.1 基本公式

变分贝叶斯方法中,我们常用KL散度来衡量变分分布q(Z)与真实后验分布p(Z|X)之间的差异,并试图最小化这个差异:

KL ( q ( Z ) ∥ p ( Z ∣ X ) ) = E q ( Z ) [ log ⁡ q ( Z ) − log ⁡ p ( Z ∣ X ) ] \text{KL}(q(Z) \| p(Z|X)) = \mathbb{E}_{q(Z)}[\log q(Z) - \log p(Z|X)] KL(q(Z)p(ZX))=Eq(Z)[logq(Z)logp(ZX)]

由于p(Z|X)难以直接计算,我们通常通过最大化证据下界(ELBO)来间接优化KL散度:

ELBO = E q ( Z ) [ log ⁡ p ( X , Z ) − log ⁡ q ( Z ) ] \text{ELBO} = \mathbb{E}_{q(Z)}[\log p(X, Z) - \log q(Z)] ELBO=Eq(Z)[logp(X,Z)logq(Z)]

3.2 具体实例与推演

考虑一个简单的隐马尔可夫模型,其中隐变量Z表示状态序列,观测数据X表示对应的观测序列。我们可以使用变分贝叶斯方法来估计隐变量的分布。

假设我们有以下公式:

  • 观测数据的似然函数: p ( X ∣ Z ) p(X|Z) p(XZ)
  • 隐变量的先验分布: p ( Z ) p(Z) p(Z)
  • 变分分布: q ( Z ) q(Z) q(Z)(通常选择为易于处理的分布,如高斯分布)

我们的目标是最大化ELBO:

ELBO = E q ( Z ) [ log ⁡ p ( X , Z ) − log ⁡ q ( Z ) ] \text{ELBO} = \mathbb{E}_{q(Z)}[\log p(X, Z) - \log q(Z)] ELBO=Eq(Z)[logp(X,Z)logq(Z)]

通过展开和化简,我们可以得到具体的优化目标,并通过梯度上升等算法来求解。

第四节:相似公式比对【重点在差异】

公式/模型共同点不同点
期望最大化(EM)都用于处理含有隐变量的模型参数估计。EM算法通过迭代求解期望步和最大化步来优化参数,而变分贝叶斯方法则通过优化变分分布来近似后验分布。
变分自编码器(VAE)都涉及到了变分分布的概念。VAE是一种生成模型,用于数据的生成和重构,而变分贝叶斯方法更侧重于模型推断和隐变量分布的估计。

第五节:核心代码与可视化【全英文的代码,标签label尤其需要是英文的!】

以下是一个使用变分贝叶斯方法进行隐变量估计的简化示例代码(假设已定义好相关函数和模型):

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.optimize import minimize# Define the log joint probability log p(X, Z)
def log_joint_probability(Z, X, model_params):# ... (implementation details)return log_p_XZ# Define the log variational distribution log q(Z)
def log_q(Z, variational_params):# ... (implementation details)return log_q_Z# Define the Evidence Lower Bound (ELBO) to maximize
def elbo(variational_params, X, model_params):# Sample from the variational distributionZ_samples = np.random.normal(loc=variational_params['mu'], scale=np.sqrt(variational_params['sigma']), size=(num_samples,))# Calculate the ELBOlog_p_XZ_samples = np.array([log_joint_probability(z, X, model_params) for z in Z_samples])log_q_Z_samples = np.array([log_q(z, variational_params) for z in Z_samples])elbo_value = np.mean(log_p_XZ_samples - log_q_Z_samples)return -elbo_value  # We need to minimize the negative ELBO# Initialize variational parameters
variational_params = {'mu': 0.0, 'sigma': 1.0}# Optimize the variational parameters to maximize the ELBO
result = minimize(elbo, variational_params, args=(X, model_params), method='L-BFGS-B')# Extract optimized parameters
optimized_mu = result.x[0]
optimized_sigma = np.exp(result.x[1])  # Ensure sigma is positive# Visualize the results
sns.set_theme(style="whitegrid")
plt.hist(Z_samples, bins=30, density=True, alpha=0.6, color='g', label='Variational Distribution q(Z)')
plt.axvline(optimized_mu, color='r', linestyle='dashed', linewidth=2, label=f'Optimized mu: {optimized_mu:.2f}')
plt.xlabel('Hidden Variable Z')
plt.ylabel('Density')
plt.title('Variational Distribution of Hidden Variable Z')
plt.legend()
plt.show()print(f"Optimized variational parameters: mu = {optimized_mu:.2f}, sigma = {optimized_sigma:.2f}")
输出内容描述
变分分布的直方图显示了优化后的变分分布q(Z)的形状。
优化后的变分参数提供了变分分布q(Z)的均值和标准差。
图表标题、x轴标签、y轴标签提供了图表的基本信息和说明。

参考文献

  1. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877. [【影响因子=4.0,统计学领域权威期刊】]内容概述:该论文对变分推断方法进行了全面回顾,介绍了其在统计学中的应用和优势,为理解和使用变分分布提供了理论基础。
  2. Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In International Conference on Learning Representations. [【会议论文,机器学习领域重要会议】]内容概述:该论文提出了变分自编码器(VAE)模型,通过变分推断方法来学习数据的生成过程,为变分分布在生成模型中的应用提供了重要思路。

相关文章:

【通俗理解】隐变量的变分分布探索——从公式到应用

【通俗理解】隐变量的变分分布探索——从公式到应用 关键词提炼 #隐变量 #变分分布 #概率模型 #公式推导 #期望最大化 #机器学习 #变分贝叶斯 #隐马尔可夫模型 第一节:隐变量的变分分布的类比与核心概念【尽可能通俗】 隐变量的变分分布就像是一场“捉迷藏”游戏…...

PyTorch 分布式并行计算

0. Abstract 使用 PyTorch 进行多卡训练, 最简单的是 DataParallel, 仅仅添加一两行代码就可以使模型在多张 GPU 上并行地计算. 但它是比较老的方法, 官方推荐使用新的 Distributed Data Parallel, 更加灵活与强大: 1. Distributed Data Parallel (DDP) 从一个简单的非分布…...

[cg] vulkan external_memory

最近在写硬件编码的代码,渲染器渲染出的RT需要给到编码器做硬编,有两种方法能做。 一是通过 map的方式,把显存里的数据读到cpu,拷贝一份cpu data给编码器,但这种方式会有内存拷贝的开销。所以,我们思考是否…...

如何使用Python代码实现给GPU预加热

如何使用Python代码实现给GPU预加热 一、引言二、使用深度学习框架进行预加热2.1 TensorFlow预加热2.2 PyTorch预加热三、使用CUDA进行预加热四、预加热的效果评估与优化五、结论与展望在高性能计算和深度学习领域,GPU(图形处理器)已经成为不可或缺的加速工具。然而,在实际…...

硬件知识 cadence16.6 原理图输出为pdf 网络名下划线偏移 (ORCAD)

1. cadence原理图输出为PDF网络名下划线偏移 生这种情况的原因 1. 设计的原理图图纸大小比正常的 A4图纸大。 2. 打印为PDF 的时候,打印机的设置有问题。 2.cadence原理图输出为 PDF网络名下划线偏移的情况 可以看到上图,网络名往上漂移。 3. 解决办法 …...

ffmpeg视频滤镜:提取缩略图-framestep

滤镜描述 官网地址 > FFmpeg Filters Documentation 这个滤镜会间隔N帧抽取一帧图片&#xff0c;因此这个可以用于设置视频的缩略图。总体上这个滤镜比较简单。 滤镜使用 滤镜参数 framestep AVOptions:step <int> ..FV....... set frame st…...

RecyclerView详解——(四)缓存复用机制

稍微看了下源码和部分文章&#xff0c;在此做个小小的总结 RecyclerView&#xff0c;意思为可回收的view&#xff0c;那么相对于listview&#xff0c;他的缓存复用肯定是一大优化。 具体而言&#xff0c;当一个列表项被移出屏幕后&#xff0c;RecyclerView并不会销毁其视图&a…...

进程 系统调用 中断

进程P通过执行系统调用从键盘接收一个字符的输入&#xff0c;已知此过程中与进程P相关的操作包括&#xff1a; ①将进程P插入就绪队列&#xff1b; ②将进程P插入阻塞队列&#xff1b; ③将字符从键盘控制器读入系统缓冲区&#xff1b; ④启动键盘中断处理程序&#xff1b; …...

演讲回顾丨杭州悦数 CTO 叶小萌:图数据库发展新航向——拥抱 GQL,融合 HTAP,携手 AI

本文为杭州悦数 CTO 叶小萌在“标准智能&#xff1a;新质生产力的原动力”悦数图数据库新产品发布会上的演讲回顾&#xff0c;主题为&#xff1a;《新标准、新期待&#xff1a;展望图数据库发展的关键方向》 各位嘉宾、悦数图数据库的用户以及线上的观众朋友们大家好&#xff0…...

Java安全—JNDI注入RMI服务LDAP服务JDK绕过

前言 上次讲到JNDI注入这个玩意&#xff0c;但是没有细讲&#xff0c;现在就给它详细地讲个明白。 JNDI注入 那什么是JNDI注入呢&#xff0c;JNDI全称为 Java Naming and Directory Interface&#xff08;Java命名和目录接口&#xff09;&#xff0c;是一组应用程序接口&…...

C++:设计模式-单例模式

单例模式&#xff08;Singleton Pattern&#xff09;是一种设计模式&#xff0c;确保一个类只有一个实例&#xff0c;并且提供全局访问点。实现单例模式的关键是防止类被多次实例化&#xff0c;且能够保证实例的唯一性。常见的实现手法包括懒汉式、饿汉式、线程安全的懒汉式等。…...

Softing工业将OPC UA信息建模集成到边缘应用和安全集成服务器中

Softing工业宣布将OPC UA&#xff08;统一架构&#xff09;信息建模集成到其边缘产品系列及安全集成服务器&#xff08;SIS&#xff09;中&#xff0c;这一技术进步使得在工业物联网&#xff08;IIoT&#xff09;应用中的数据集成、交换与控制更加无缝、有效。 &#xff08;OPC…...

WPF中如何让Textbox显示为一条直线

由于Textbox直接使用是一条直线 设置如下代码 可以让Textbox变为直线输入 <Style TargetType"TextBox"x:Key"UsernameTextBoxStyle"><Setter Property"Template"><Setter.Value><ControlTemplate TargetType"{x:Typ…...

VSCode汉化教程【简洁易懂】

我们安装完成后默认是英文界面。 找到插件选项卡&#xff0c;搜索“Chinese”&#xff0c;找到简体&#xff08;更具你的需要&#xff09;&#xff08;Microsoft提供&#xff09;Install。 安装完成后选择Change Language and Restart。...

跨平台多开账号防关联:轻松管理多个账号!

对于跨境电商、独立站以及社媒营销领域&#xff0c;如何高效管理多个账号、确保账号安全是企业面临的重大挑战。那么如何仅用一台电脑就能实现跨平台多开账号呢&#xff1f; 一、为什么需要跨平台多开账号并防关联&#xff1f; 1. 品牌推广&#xff1a;不同平台拥有不同的用户…...

DICOM图像处理:深入解析DICOM彩色图像中的Planar配置及其对像素数据解析处理的实现

引言 在DICOM(Digital Imaging and Communications in Medicine)标准中,彩色图像的存储与显示涉及多个关键属性,其中**Planar Configuration(平面配置)**属性(标签 (0028,0006))尤为重要。当遇到彩色DICOM图像在浏览时被错误地分割为9张小图,而实际应显示为一…...

jupyter notebook的 markdown相关技巧

目录 1 先选择为markdown类型 2 开关技巧 2.1 运行markdown 2.2 退出markdown显示效果 2.3 注意点&#xff1a;一定要 先选择为markdown类型 3 一些设置技巧 3.1 数学公式 3.2 制表 3.3 目录和列表 3.4 设置各种字体效果&#xff1a;加粗&#xff0c;斜体&#x…...

Linux连接网络的三种方式

Linux 连接网络的三种常见方式如下&#xff1a; 桥接模式 原理&#xff1a;虚拟网络接口与物理网络接口或另一个虚拟接口 “桥接”&#xff0c;形成逻辑上的网络交换机&#xff0c;使所有通过该桥接设备的数据包能被转发到桥接组中的所有接口&#xff0c;如同在一个局域网内…...

##继承##

继承的概念 #继承是新模板基于老模板的基础上修改而成&#xff0c;制作新模板时不需要重新开始制作&#xff0c;可以在老模板的基础上进行修改.(如手机版本的换代&#xff0c;软件的版本更新等) #程序也可以继承 继承的格式: class 继承模块&#xff08;被继承模块&#xff…...

2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略 完整参考论文(1)

摘要 近年来,中国宠物食品行业迅速增长,但面临复杂的国际形势和多变的市场环境,因此科学地分析和预测该行业的发展趋势至关重要。本研究通过构建多个机器学习与统计回归模型,量化分析中国宠物食品行业的关键驱动因素,预测未来宠物食品总产值和出口值。 在数据处理部分,…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...