当前位置: 首页 > news >正文

python的 pandas.Dataframe 和 pandas.Series基础内容

目录

0 有一个比较麻烦琐碎的地方

1 python  pandas.Dataframe

2 pd.concat() 可以合并 pd.Dataframe

2.1 pd.concat() 合并规则

3  pd.Dataframe.drop() 删除行列的操作

4 pd.Dataframe 列操作

5 pd.Dataframe 行操作

5.1 sample_dataframe2.head(n=2) 取前面的n行,不能任意

5.2 sample_dataframe2.query("查询条件")取前面的n行,不能任意

6 可以用pd.Dataframe().query() 方法 同时进行行和列筛选!

7  序列 pandas.Series()

7.1 什么是序列

7.2 将pd.Dataframe取出1列会变成pd.Series

7.3 序列 pd.series 和数组array() 的转化


0 有一个比较麻烦琐碎的地方

  • 所有的方法里,下面方法的参数,基本都是加一个""括起来基本就够了
  • 有些地方需要多层的中括号,[] , 比如 [ [ ] ]

1 python  pandas.Dataframe

  • 本质是一个二维表
  • 特殊点,在于多了一个默认的序号列
  • 语法
  • pd.Dataframe({key1:value1,key2:value2})

2 pd.concat() 可以合并 pd.Dataframe

2.1 pd.concat() 合并规则

  • pd.concat() 语法
  • pd.concat([pd.Dataframe1,pd.Dataframe1],axis=0/1) 
  • pd.concat() 可以指定合并的方向,默认是axis=0,也就是按行的方向合并
  • pd.concat() 可以指定合并的方向,如果是axis=1,就是按列的方向进行合并
import numpy as np
import pandas as pd
import scipy as sp# 可以用list 生成np.array()
sample_array1=np.array([1,2,3])
sample_array2=np.array([10,20,30])
sample_array3=np.array([100,200,300])# 进一步,可以用np.array()生成pd.Series
# 注意pd.Series 首字母一定大写
sample_series1=pd.Series(sample_array1)
print(sample_series1)
print()# 进一步,也可以用np.array()生成pd.DataFrame
# 注意pd.DataFrame 首字母一定大写
sample_dataframe1=pd.DataFrame({"col1":sample_array1,"col2":sample_array2,"col3":sample_array3,})
print(sample_dataframe1)
print()sample_dataframe2=pd.DataFrame({"col1":sample_array1,"col2":sample_array2+1,"col3":sample_array3+1,})
print(sample_dataframe2)
print()print(pd.concat([sample_dataframe1,sample_dataframe2]))  # pd.concat()默认合并是axis=0, 按行合并
print()print(pd.concat([sample_dataframe1,sample_dataframe2],axis=1))
print()

3  pd.Dataframe.drop() 删除行列的操作

  • pd.Dataframe.drop()
  • pd.Dataframe.drop("行名/列名",axis=0/1)
  • axis=0 是行
  • 注意:列名一般是字符串,如 "col1"
  • 注意:行名一般是数字,如 1

4 pd.Dataframe 列操作

  • pd.Dataframe 数据帧
  • 操作列的办法有两种
  1. 直接引用 pd.Dataframe 对象的属性,pd.Dataframe.列名(不加字符串引号)
  2. 类切片的列操作方法
  3. pd.Dataframe["列名1"]
  4. pd.Dataframe[["列名1","列名2","列名3"]]  #注意是双层中括号

5 pd.Dataframe 行操作

  • 行操作有两种方法
  • sample_dataframe2.head() 方法
  • sample_dataframe2.query()方法

5.1 sample_dataframe2.head(n=2) 取前面的n行,不能任意

  • n 只能是前面的连续列
print(sample_dataframe2)
print()
print(sample_dataframe2.head(n=2))

5.2 sample_dataframe2.query("查询条件")取前面的n行,不能任意

  • sample_dataframe2.query("查询条件")
  • sample_dataframe2.query("可以是任意的一个行条件,不要求非是index的值!")
  • sample_dataframe2.query("条件1 | 条件2")      # or  关系
  • sample_dataframe2.query("条件1& 条件2")      # and关系

6 可以用pd.Dataframe().query() 方法 同时进行行和列筛选!

print(sample_dataframe2.query("col3==301")[["col2","col3"]])

7  序列 pandas.Series()

7.1 什么是序列

  • 特殊之处:默认带一个序号列
  • 可以认为是带 序号的 数组/列表
  • pandas.Series( data, index, dtype, copy)

data:输入的数据,可以是列表、常量、ndarray 数组等。
index:索引值必须是唯一的,与data的长度相同,默认为np.arange(n)
dtype:数据类型
copy:是否复制数据,默认为false

7.2 将pd.Dataframe取出1列会变成pd.Series

  • 将pd.Dataframe取出1列会变成pd.Series
  • 也就是说 pd.Series 是  pd.Dataframe 的其中1列!
  • 注意方法不同有差别
  • 如果是单取出1列,生成pd.Series
  • 如果是单取出多列,生成的只是更小的pd.Dataframe,并不是pd.Series,很好理解,不要搞错。
print(sample_dataframe2)
print()
print(sample_dataframe2.col2)
print()
print(sample_dataframe2["col2"])
print()
print(sample_dataframe2[["col2"]])
print()print(type(sample_dataframe2))
print()
print(type(sample_dataframe2.col2))
print()
print(type(sample_dataframe2["col2"]))
print()
print(type(sample_dataframe2[["col2"]]))

7.3 序列 pd.series 和数组array() 的转化

  • pd.series.values 即可以生成对应的 np.array() 数组!
print(sample_dataframe2)
print()
print(sample_dataframe2.col2)
print()
print(sample_dataframe2.col2.values)
print()print(type(sample_dataframe2))
print()
print(type(sample_dataframe2.col2))
print()
print(type(sample_dataframe2.col2.values))
print()

相关文章:

python的 pandas.Dataframe 和 pandas.Series基础内容

目录 0 有一个比较麻烦琐碎的地方 1 python pandas.Dataframe 2 pd.concat() 可以合并 pd.Dataframe 2.1 pd.concat() 合并规则 3 pd.Dataframe.drop() 删除行列的操作 4 pd.Dataframe 列操作 5 pd.Dataframe 行操作 5.1 sample_dataframe2.head(n2) 取前面的n行&…...

golang学习5

为结构体添加方法 异常处理过程...

【C语言】11月第二次测试 ing

文章目录 1.输入n名同学的成绩和学号,对成绩排序,输出对应学号 要求重复的学号重新输入 计算n名同学的平均值,对小于60分的同学删除分数 大于60分的同学输出:优秀:几人,良好:几人,中…...

行列式的理解与计算:线性代数中的核心概念

开发领域:前端开发 | AI 应用 | Web3D | 元宇宙 技术栈:JavaScript、React、ThreeJs、WebGL、Go 经验经验:6 年 前端开发经验,专注于图形渲染和 AI 技术 开源项目:github 简智未来、数字孪生引擎、前端面试题 大家好&a…...

按出生日期排序(结构体专题)

题目描述 送人玫瑰手有余香,小明希望自己能带给他人快乐,于是小明在每个好友生日的时候发去一份生日祝福。小明希望将自己的通讯录按好友的生日排序排序,这样就查看起来方便多了,也避免错过好友的生日。为了小明的美好愿望&#x…...

【C++】拆分详解 - 多态

文章目录 一、概念二、定义和实现1. 多态的构成条件2. 虚函数2.1 虚函数的重写/覆盖2.2 虚函数重写的两个例外 3. override 和 final关键字4. 重载/重写/隐藏的对比5. 例题 三、纯虚函数和抽象类四、多态的原理1. 虚函数表2. 实现原理3. 动态绑定和静态绑定 总结 一、概念 多态…...

Python世界:力扣题解875,珂珂爱吃香蕉,中等

Python世界:力扣题解875,珂珂爱吃香蕉,中等 任务背景思路分析代码实现坑点排查测试套件本文小结 任务背景 问题来自力扣题目875 Koko Eating Bananas,大意如下: Koko loves to eat bananas. There are n piles of bana…...

Java设计模式 —— Java七大设计原则详解

文章目录 前言一、单一职责原则1、概述2、案例演示 二、接口隔离原则1、概述2、案例演示 三、依赖倒转原则1、概述2、案例演示 四、里氏替换原则1、概述2、案例演示 五、开闭原则1、概述2、案例演示 六、迪米特法则1、概述2、案例演示 七、合成/聚合复用原则1、概述2、组合3、聚…...

SpringBoot学习记录(六)配置文件参数化

SpringBoot学习记录(六)配置文件参数化 一、参数提取到配置文件中二、yml配置文件三、ConfigurationProperties注解实现批量属性注入 一、参数提取到配置文件中 定义在代码中的参数的值分散在各个不同的文件中,不便于后期维护管理&#xff0…...

android 使用MediaPlayer实现音乐播放--获取音乐数据

前面已经添加了权限&#xff0c;有权限后可以去数据库读取音乐文件&#xff0c;一般可以获取全部音乐、专辑、歌手、流派等。 1. 获取全部音乐数据 class MusicHelper {companion object {SuppressLint("Range")fun getMusic(context: Context): MutableList<Mu…...

.net 8使用hangfire实现库存同步任务

C# 使用HangFire 第一章:.net Framework 4.6 WebAPI 使用Hangfire 第二章:net 8使用hangfire实现库存同步任务 文章目录 C# 使用HangFire前言项目源码一、项目架构二、项目服务介绍HangFire服务结构解析HangfireCollectionExtensions 类ModelHangfireSettingsHttpAuthInfoUs…...

第 22 章 - Go语言 测试与基准测试

在Go语言中&#xff0c;测试是一个非常重要的部分&#xff0c;它帮助开发者确保代码的正确性、性能以及可维护性。Go语言提供了一套标准的测试工具&#xff0c;这些工具可以帮助开发者编写单元测试、表达式测试&#xff08;通常也是指单元测试中的断言&#xff09;、基准测试等…...

VB.Net笔记-更新ing

目录 1.1 设置默认VS的开发环境为VB.NET&#xff08;2024/11/18&#xff09; 1.2 新建一个“Hello&#xff0c;world”的窗体&#xff08;2024/11/18&#xff09; 1.3 计算圆面积的小程序&#xff08;2024/11/18&#xff09; 显示/隐式 声明 &#xff08;2024/11/18&…...

centos 服务器 docker 使用代理

宿主机使用代理 在宿主机的全局配置文件中添加代理信息 vim /etc/profile export http_proxyhttp://127.0.0.1:7897 export https_proxyhttp://127.0.0.1:7897 export no_proxy"localhost,127.0.0.1,::1,172.171.0.0" docker 命令使用代理 例如我想在使用使用 do…...

python语言基础

1. 基础语法 Q: Python 中的变量与数据类型有哪些&#xff1f; A: Python 支持多种数据类型&#xff0c;包括数字&#xff08;整数 int、浮点数 float、复数 complex&#xff09;、字符串 str、列表 list、元组 tuple、字典 dict 和集合 set。每种数据类型都有其特定的用途和…...

Python中的Apriori库详解

文章目录 Python中的Apriori库详解一、引言二、Apriori算法原理与Python实现1、Apriori算法原理2、Python实现1.1、数据准备1.2、转换数据1.3、计算频繁项集1.4、提取关联规则 三、案例分析1、导入必要的库2、准备数据集3、数据预处理4、应用Apriori算法5、生成关联规则6、打印…...

MongoDB比较查询操作符中英对照表及实例详解

mongodb比较查询操作符中英表格一览表 NameDescription功能$eqMatches values that are equal to a specified value.匹配值等于指定值。$gtMatches values that are greater than a specified value.匹配值大于指定值。$gteMatches values that are greater than or equal to…...

掌上单片机实验室 – RT-Thread + ROS2 初探(25)

在初步尝试RT-Thread之后&#xff0c;一直在琢磨如何进一步感受它的优点&#xff0c;因为前面只是用了它的内核&#xff0c;感觉和FreeRTOS、uCOS等RTOS差别不大&#xff0c;至于它们性能、可靠性上的差异&#xff0c;在这种学习性的程序中&#xff0c;很难有所察觉。 RT-Threa…...

‌Kotlin中的?.和!!主要区别

目录 1、?.和!!介绍 2、使用场景和最佳实践 3、代码示例和解释 1、?.和!!介绍 ‌Kotlin中的?.和!!主要区别在于它们对空指针的处理方式。‌ ‌?.&#xff08;安全调用操作符&#xff09;‌&#xff1a;当变量可能为null时&#xff0c;使用?.可以安全地调用其方法或属性…...

iframe嵌入踩坑记录

iframe嵌入父子页面token问题 背景介绍 最近在做在平台A中嵌入平台B某个页面的需求&#xff0c;我负责的是平台B这边&#xff0c;使这个页面被嵌入后能正常使用。两个平台都实现了单点登录。 其实这是第二次做这个功能了&#xff0c;原本以为会很顺利&#xff0c;但没想到折腾…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...