当前位置: 首页 > news >正文

PyTorch图像预处理:计算均值和方差以实现标准化

在深度学习中,图像数据的预处理是一个关键步骤,它直接影响模型的训练效果和收敛速度。PyTorch提供的transforms.Normalize()函数允许我们对图像数据进行标准化处理,即减去均值并除以方差。这一步骤对于提高模型性能至关重要。

为什么需要标准化

标准化处理有助于模型更快地收敛,因为它确保了不同通道的输入数据具有相同的分布,从而减少了模型在训练初期对某些通道的偏好。

ImageNet数据集的均值和方差

对于ImageNet数据集,其均值和方差分别为:

mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)

这些值是基于大量图像计算得出的,因此在训练时被广泛使用。

为特定数据集计算均值和方差

然而,对于特定的数据集,使用ImageNet的统计值可能不是最佳选择。以下是计算特定数据集均值和方差的步骤和代码:

import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from PIL import Imageclass MyDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_info = get_img_info(data_dir)self.transform = transformdef __getitem__(self, index):path_img, label = self.data_info[index]img = Image.open(path_img).convert('RGB')if self.transform:img = self.transform(img)return img, labeldef __len__(self):return len(self.data_info)def get_img_info(image_paths):data_info = []with open(image_paths) as f:for ln in f:image_path, label = ln.rstrip('\n').split(' ')data_info.append((image_path, int(label)))return data_info# 设置数据集路径和转换
train_dir = 'path_to_your_dataset'
train_transform = transforms.Compose([transforms.Resize((256, 256)),transforms.ToTensor(),
])train_data = MyDataset(data_dir=train_dir, transform=train_transform)
train_loader = DataLoader(dataset=train_data, batch_size=1, shuffle=True)mean = torch.zeros(3)
std = torch.zeros(3)for X, _ in train_loader:for d in range(3):mean[d] += X[:, d, :, :].mean()std[d] += X[:, d, :, :].std()mean.div_(len(train_data))
std.div_(len(train_data))print("Mean of each channel:", list(mean.numpy()))
print("Std of each channel:", list(std.numpy()))

输出结果

运行上述代码后,你将得到特定数据集的均值和方差,如下所示:

Mean of each channel: [0.47774732, 0.42371374, 0.39007202]
Std of each channel: [0.23162617, 0.21558702, 0.21163906]

这些值可以用于transforms.Normalize()函数中,以实现对特定数据集的标准化处理。

其中输入train_dir是一个包含图像路径和标签的文本,中间用空格进行区分,样式如下:

train/0/1.jpg 0
train/0/9.jpg 0
train/1/a9.jpg 1
train/0/3d.jpg 0
train/0/46.jpg 0
train/0/51.jpg 0
train/1/4e.jpg 1
train/1/4f.jpg 1
train/1/c7.jpg 1
train/0/5.jpg 0

注意: 请确保在运行代码前替换train_dir为你的数据集路径,并确保数据集格式正确。

结论:
通过为特定数据集计算均值和方差,可以更精确地进行图像预处理,从而提高模型的训练效果和收敛速度。这种方法不仅适用于PyTorch,也可以应用于其他深度学习框架中。

参考链接:

  • 计算图像数据集的均值和方差
  • 计算pytorch标准化(Normalize)所需要数据集的均值和方差

相关文章:

PyTorch图像预处理:计算均值和方差以实现标准化

在深度学习中,图像数据的预处理是一个关键步骤,它直接影响模型的训练效果和收敛速度。PyTorch提供的transforms.Normalize()函数允许我们对图像数据进行标准化处理,即减去均值并除以方差。这一步骤对于提高模型性能至关重要。 为什么需要标准…...

slice介绍slice查看器

Android Jetpack架构组件(十)之Slices - 阅读清单 - 腾讯云开发者社区-腾讯云 slice 查看器apk 用adb intall 安装 Releases android/user-interface-samples GitHubMultiple samples showing the best practices in the user interface on Android. - Releases android/u…...

Android音频采集

在 Android 开发领域,音频采集是一项非常重要且有趣的功能。它为各种应用程序,如语音聊天、音频录制、多媒体内容创作等提供了基础支持。今天我们就来深入探讨一下 Android 音频采集的两大类型:Mic 音频采集和系统音频采集。 1. Mic音频采集…...

通过轻易云平台实现聚水潭数据高效集成到MySQL的技术方案

聚水潭数据集成到MySQL的技术案例分享 在本次技术案例中,我们将详细探讨如何通过轻易云数据集成平台,将聚水潭的数据高效、可靠地集成到MySQL数据库中。具体方案为“聚水谭-店铺查询单-->BI斯莱蒙-店铺表”。这一过程不仅需要处理大量数据的快速写入…...

类和对象( 中 【补充】)

目录 一 . 赋值运算符重载 1.1 运算符重载 1.2 赋值运算符重载 1.3 日期类实现 1.3.1 比较日期的大小 : 1.3.2 日期天数 : 1.3.3 日期 - 天数 : 1.3.4 前置/后置 1.3.5 日期 - 日期 1.3.6 流插入 << 和 流提取 >> 二 . 取地址运算符重载 2.1 const…...

如何使用gpio模拟mdio通信?

一、前言 实际项目开发中&#xff0c;由于设计原因&#xff0c;会将phy的mdio引脚连接到SoC的2个空闲gpio上&#xff0c; 这样就无法通过Gmac自有的架构实现修改phy&#xff0c; 因此只能通过GPIO模拟的方式实现MDIO&#xff0c; 好在Linux支持MDIO via GPIO功能。 该功能…...

C# 中的事件和委托:构建响应式应用程序

C#中的事件和委托。事件和委托是C#中用于实现观察者模式和异步回调的重要机制&#xff0c;它们在构建响应式和交互式应用程序中发挥着重要作用。以下是一篇关于C#中事件和委托的文章。 引言 事件和委托是C#语言中非常重要的特性&#xff0c;它们允许你实现观察者模式和异步回…...

科技赋能健康:多商户Java版商城系统引领亚健康服务数字化变革

在当今社会&#xff0c;随着生活节奏的加快和工作压力的增大&#xff0c;越来越多的人处于亚健康状态。据《The Lancet》期刊2023年的统计数据显示&#xff0c;全球亚健康状态的人群比例已高达82.8%&#xff0c;这一数字背后&#xff0c;隐藏着巨大的健康风险和社会成本。亚健康…...

区块链网络示意图;Aura共识和Grandpa共识(BFT共识)

目录 区块链网络示意图 Aura共识和Grandpa共识(BFT共识) Aura共识 Grandpa共识(BFT共识) Aura与Grandpa的结合 区块链网络示意图 CP Blockchain:这是中央处理区块链(或可能指某种特定的处理单元区块链)的缩写。它可能代表了该区块链网络的主要处理或存储单元。在这…...

Javaweb梳理18——JavaScript

今日目标 掌握 JavaScript 的基础语法掌握 JavaScript 的常用对象&#xff08;Array、String&#xff09;能根据需求灵活运用定时器及通过 js 代码进行页面跳转能通过DOM 对象对标签进行常规操作掌握常用的事件能独立完成表单校验案例 18.1 JavaScript简介 JavaScript 是一门跨…...

面向对象-接口的使用

1. 接口的概述 为什么有接口&#xff1f; 借口是一种规则&#xff0c;对于继承而言&#xff0c;部分子类之间有共同的方法&#xff0c;为了约束方法的使用&#xff0c;使用接口。 接口的应用&#xff1a; 接口不是一类事物&#xff0c;它是对行为的抽象。 2. 接口的定义和使…...

失落的Apache JDBM(Java Database Management)

简介 Apache JDBM&#xff08;Java Database Management&#xff09;是一个轻量级的、基于 Java 的嵌入式数据库管理系统。它主要用于在 Java 应用程序中存储和管理数据。这个项目已经过时了&#xff0c;只是发表一下以示纪念&#xff0c;现在已经大多数被SQLite和Derby代替。…...

Vue3+SpringBoot3+Sa-Token+Redis+mysql8通用权限系统

sa-token支持分布式token 前后端代码&#xff0c;地球号: bright12389...

MySQL 三大日志详解

在 MySQL 数据库中&#xff0c;binlog&#xff08;二进制日志&#xff09;、redo log&#xff08;重做日志&#xff09;和 undo log&#xff08;回滚日志&#xff09;起着至关重要的作用。它们共同保障了数据库的高可用性、数据一致性和事务的可靠性。下面将对这三大日志进行详…...

Java 岗面试八股文及答案整理(2024最新版)

春招&#xff0c;秋招&#xff0c;社招&#xff0c;我们 Java 程序员的面试之路&#xff0c;是挺难的&#xff0c;过了 HR&#xff0c;还得被技术面&#xff0c;小刀在去各个厂面试的时候&#xff0c;经常是通宵睡不着觉&#xff0c;头发都脱了一大把&#xff0c;还好最终侥幸能…...

Web3.0安全开发实践:Clarity最佳实践总结

在过去的一段时间里&#xff0c;CertiK团队对比特币生态系统及其发展进行了深入研究。同时&#xff0c;团队还审计了多个比特币项目以及基于不同编程语言的智能合约&#xff0c;包括OKX的BRC-20钱包和MVC DAO的sCrypt智能合约实现。 现在&#xff0c;我们的研究重点转向了Clar…...

基于Springboot+Vue动漫推荐平台管理系统(源码+lw+讲解部署+PPT)

前言 详细视频演示 论文参考 系统介绍 系统概述 核心功能 用户角色与功能 具体实现截图 1. 热门动漫功能 2. 文章专栏功能 3. 会员分享功能 4. 热门动漫管理功能&#xff08;管理员端&#xff09; 5. 动漫分类管理功能 技术栈 后端框架SpringBoot 前端框架Vue …...

秋意浓,森林披金装

秋意浓&#xff0c;森林披金装&#xff0c; 枫叶如火&#xff0c;漫山遍野狂。 松间轻风送寒意&#xff0c; 鸟鸣悠扬入云翔。 林间小径蜿蜒行&#xff0c; 落叶铺成金色毯。 溪水潺潺绕石转&#xff0c; 映出天边一抹霞。 野菊点缀在草间&#xff0c; 白云悠悠随意闲。…...

Chrome离线安装包下载

1、问Chrome的官网&#xff1a;https://www.google.cn/chrome/ 直接下载的是在线安装包&#xff0c;安装需要联网。 2、如果需要在无法联网的设备上安装Chrome&#xff0c;需要在上面的地址后面加上?standalone1。 Chrome离线安装包下载地址&#xff1a;https://www.google.c…...

安卓手机5G网络频繁掉4G 问题解决 手机5G网络优化方案

问题环境 在某个长期停留的位置&#xff08;例如&#xff1a;躺平&#xff09;使用手机时网络突然从5G跳到4G&#xff0c;偶尔跳来跳去导致网络体验很差&#xff0c;经过调整5G网络情况下网速及其他体验都要更好&#xff0c;基于这样的情况使用一种简单的操作&#xff0c;锁定5…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...