当前位置: 首页 > news >正文

刷题——【模板】二维前缀和

前缀和

  • 题目
    • 题目链接
    • 题解
      • 方法一
      • 方法二

题目

描述
给你一个 n 行 m 列的矩阵 A ,下标从1开始。

接下来有 q 次查询,每次查询输入 4 个参数 x1 , y1 , x2 , y2

请输出以 (x1, y1) 为左上角 , (x2,y2) 为右下角的子矩阵的和,
输入描述:
第一行包含三个整数n,m,q.

接下来n行,每行m个整数,代表矩阵的元素

接下来q行,每行4个整数x1, y1, x2, y2,分别代表这次查询的参数
在这里插入图片描述

输出描述:
输出q行,每行表示查询结果。

在这里插入图片描述

题目链接

二维前缀和题目链接

题解

方法一

显而易见,最容易想到的方法就是先录入数据,然后一行一行的求和。但是这种方法会超时。其时间复杂度为O(m * n * q)。

#include <iostream>
#include <vector>using namespace std;int main() {int n, m, q;cin >> n >> m >> q;vector<vector<int>> matrix(n, vector<int>(m));for (int i = 0; i < n; ++i) {for (int j = 0; j < m; ++j) {cin >> matrix[i][j];}}for (int i = 0; i < q; ++i) {int x1, y1, x2, y2;cin >> x1 >> y1 >> x2 >> y2;int sum = 0;for (int row = x1 - 1; row <= x2 - 1; ++row) { // 数组是从0开始的,所以要减1for (int col = y1 - 1; col <= y2 - 1; ++col) {sum += matrix[row][col];}}cout << sum << endl;}return 0;
}

不多赘述,下面看最优解。

方法二

一遍遍求显然复杂度太高,那么能不能先求取(1,1)到(x,y)的和在找规律求取题目要求的和呢?答案是可以的。

先求前缀和数组,显然我们不能每次都遍历一次求和,复杂度太高,那么就可以利用前面已经求出的值求出当前的和。

ps:因为下标从1开始,所以不用考虑越界。
在这里插入图片描述

由此可以得出D区域的求和公式为dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + arr[i][j];

再求某一个小区域的和,与此类似,画图总结公式,利用已知和求取。

在这里插入图片描述
由此可以得出D区域的求和公式为dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1];

最终代码

#include <iostream>
#include <vector>
using namespace std;int main() 
{int n, m, q;cin >> n >> m >> q;vector<vector<int>> arr(n+1,vector<int>(m+1));vector<vector<long long>> dp(n+1,vector<long long>(m+1));for (int i = 1; i <= n; i++) for(int j = 1; j <= m; j++)cin >> arr[i][j];for (int i = 1; i <= n; i++) for(int j = 1; j <= m; j++)dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1] + arr[i][j];int x1,y1, x2, y2;long long sum = 0;for (int i = 1; i <= q; i++) {cin >> x1 >> y1 >> x2 >> y2;sum = dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1];cout << sum << endl;}return 0;
}

相关文章:

刷题——【模板】二维前缀和

前缀和 题目题目链接题解方法一方法二 题目 描述 给你一个 n 行 m 列的矩阵 A &#xff0c;下标从1开始。 接下来有 q 次查询&#xff0c;每次查询输入 4 个参数 x1 , y1 , x2 , y2 请输出以 (x1, y1) 为左上角 , (x2,y2) 为右下角的子矩阵的和&#xff0c; 输入描述&#x…...

Xilinx 7 系列 FPGA的各引脚外围电路接法

Xilinx 7系列FPGA的外围电路接法涉及到多个方面&#xff0c;包括电源引脚、时钟输入引脚、FPGA配置引脚、JTAG调试引脚&#xff0c;以及其他辅助引脚。 本文参考资料&#xff1a; ds180 - 7 Series FPGAs Data Sheet - Overview ds181 - Artix 7 FPGAs Data Sheet - DC and AC…...

Python 爬虫 (1)基础 | 目标网站

一、目标网站 1、加密网站 1.1、关键字比较明确 企名片&#xff1a;https://wx.qmpsee.com/articleDetail?idfeef62bfdac45a94b9cd89aed5c235be 1.2、关键字比较泛 烯牛数据&#xff1a;https://www.xiniudata.com/project/event/lib/invest...

数字后端零基础入门系列 | Innovus零基础LAB学习Day11(Function ECO流程)

###LAB 20 Engineering Change Orders (ECO) 这个章节的学习目标是学习数字IC后端实现innovus中的一种做function eco的flow。对于初学者&#xff0c;如果前面的lab还没掌握好的&#xff0c;可以直接跳过这节内容。有时间的同学&#xff0c;可以熟悉掌握下这个flow。 数字后端…...

量子卷积神经网络

量子神经网络由量子卷积层、量子池化层和量子全连接层组成 量子卷积层和量子池化层交替放置&#xff0c;分别实现特征提取和特征降维&#xff0c;之后通过量子全连接层进行特征综合 量子卷积层、量子池化层和量子全连接层分别由量子卷积单元、量子池化单元和量子全连接单元组…...

储能电站构成及控制原理

系列文章目录 能量管理系统(EMS)储能充放电策略 文章目录 系列文章目录一、储能电站构成二、储能系统关键部件及作用1.电池储能系统2.功率变换系统(Power Conversion System,PCS)3.变配电系统4.后台监控系统5.继电保护及安全自动装置 三、储能电站的功能四、储能电站控制策略 …...

Rocky Linux 系统安装/部署 Docker

1、下载docker-ce的repo文件 [rootlocalhost ~]# curl https://download.docker.com/linux/centos/docker-ce.repo -o /etc/yum.repos.d/docker.repo % Total % Received % Xferd Average Speed Time Time Time Current Dloa…...

12 —— Webpack中向前端注入环境变量

需求&#xff1a;开发模式下打印语句生效&#xff0c;生产模式下打印语句失效 使用Webpack内置的DefinePlugin插件 const webpack require(webpack) module.exports { plugins: [ new webpack.DefinePlugin({ process.env.NODE_ENV:JSON.stringify(process.env.NODE_ENV) }…...

uniapp接入BMapGL百度地图

下面代码兼容安卓APP和H5 百度地图官网&#xff1a;控制台 | 百度地图开放平台 应用类别选择《浏览器端》 /utils/map.js 需要设置你自己的key export function myBMapGL1() {return new Promise(function(resolve, reject) {if (typeof window.initMyBMapGL1 function) {r…...

外卖系统开发实战:从架构设计到代码实现

开发一套外卖系统&#xff0c;需要在架构设计、技术选型以及核心功能开发等方面下功夫。这篇文章将通过代码实例&#xff0c;展示如何构建一个基础的外卖系统&#xff0c;从需求梳理到核心模块的实现&#xff0c;帮助你快速掌握开发要点。 一、系统架构设计 一个完整的外卖系…...

神经网络反向传播算法公式推导

要推导反向传播算法&#xff0c;并了解每一层的参数梯度如何计算&#xff0c;以及每一层的梯度受到哪些值的影响&#xff0c;我们使用一个简单的神经网络结构&#xff1a; 输入层有2个节点一个有2个节点的隐藏层&#xff0c;激活函数是ReLU一个输出节点&#xff0c;激活函数是…...

Spark SQL 之 QueryStage

ExchangeQueryStageExec ExchangeQueryStageExec 分为两种...

【shodan】(三)vnc漏洞利用

shodan基础&#xff08;三&#xff09; 声明&#xff1a;该笔记为up主 泷羽的课程笔记&#xff0c;本节链接指路。 警告&#xff1a;本教程仅作学习用途&#xff0c;若有用于非法行为的&#xff0c;概不负责。 count count命令起到一个统计计数的作用。 用上节的漏洞指纹来试…...

每日OJ_牛客_游游的字母串_枚举_C++_Java

目录 牛客_游游的字母串_枚举 题目解析 C代码 Java代码 牛客_游游的字母串_枚举 游游的字母串 描述&#xff1a; 对于一个小写字母而言&#xff0c;游游可以通过一次操作把这个字母变成相邻的字母。a和b相邻&#xff0c;b和c相邻&#xff0c;以此类推。特殊的&#xff0…...

51c深度学习~合集8

我自己的原文哦~ https://blog.51cto.com/whaosoft/12491632 #patchmix 近期中南大学的几位研究者做了一项对比学习方面的工作——「Inter-Instance Similarity Modeling for Contrastive Learning」&#xff0c;主要用于解决现有对比学习方法在训练过程中忽略样本间相似关系…...

嵌入式:Flash的分类以及Jlink/J-flash的编程支持

相关阅读 嵌入式https://blog.csdn.net/weixin_45791458/category_12768532.html?spm1001.2014.3001.5482 常见的Flash大致可以分为以下大类&#xff1a; Serial Nor FlashSerial Nand FlashParallel Nor FlashParallel Nand FlashSerial EEPROM Serial Nor Flash 介绍 Se…...

【爬虫】Firecrawl对京东热卖网信息爬取(仅供学习)

项目地址 GitHub - mendableai/firecrawl: &#x1f525; Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API. Firecrawl更多是使用在LLM大模型知识库的构建&#xff0c;是大模型数据准备中的一环&#xff08;在…...

遗传算法(Genetic Algorithm, GA)

简介 遗传算法&#xff08;Genetic Algorithm, GA&#xff09;是一种基于自然选择和遗传机制的优化算法&#xff0c;由 John Holland 于20世纪70年代提出。它是一种模拟生物进化过程的启发式搜索算法&#xff0c;被广泛应用于函数优化、机器学习、调度问题等领域。 代码说明 …...

【二分答案+倍增快速幂】课堂练习

P1678 烦恼的高考志愿 #include<bits/stdc.h> using namespace std; const int N1e55; int n,m,a[N];long long bs(int x){int l1,rn;while(l<r){int midlr>>1;if(a[mid]x) return 0;if(a[mid]>x) rmid-1;else lmid1;}//根据前驱后继返回最小差值//printf(&…...

LeetCode 力扣 热题 100道(九)反转链表(C++)

给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 方法一&#xff1a;迭代法 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNod…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...