当前位置: 首页 > news >正文

Arcpy 多线程批量重采样脚本

Arcpy 多线程批量重采样脚本

import arcpy
import os
import multiprocessingdef resample_tifs(input_folder, output_folder, cell_size=0.05, resampling_type="BILINEAR"):"""将指定文件夹下的所有 TIFF 文件重采样到指定分辨率,并输出到新文件夹中。参数:input_folder (str): 输入 TIFF 文件所在的文件夹路径。output_folder (str): 重采样后的 TIFF 文件输出到的文件夹路径。cell_size (float): 重采样后的分辨率大小。默认为 symbol。resampling_type (str): 重采样方法。可选值包括 "NEAREST_NEIGHBOR", "BILINEAR", "CUBIC", "MAJORITY"。默认为 "BILINEAR"。"""# 检查输入文件夹是否存在if not os.path.exists(input_folder):raise FileNotFoundError(f"输入文件夹不存在: {input_folder}")# 如果输出文件夹不存在,则创建if not os.path.exists(output_folder):os.makedirs(output_folder)print(f"已创建输出文件夹: {output_folder}")# 设置环境工作空间arcpy.env.workspace = input_folder# 获取所有 TIFF 文件tif_list = arcpy.ListRasters("*", "TIF")if not tif_list:print("没有找到 TIFF 文件。")returnprint(f"找到 {len(tif_list)} 个 TIFF 文件。开始重采样...")# 遍历每个 TIFF 文件并进行重采样for tif in tif_list:input_path = os.path.join(input_folder, tif)output_path = os.path.join(output_folder, tif)try:print(f"正在处理: {tif}")# 使用 Resample_management 工具进行重采样arcpy.management.Resample(in_raster=input_path,out_raster=output_path,cell_size=cell_size,resampling_type=resampling_type)print(f"成功重采样并保存到: {output_path}")except arcpy.ExecuteError:print(f"ArcPy 错误处理文件 {tif}: {arcpy.GetMessages(2)}")except Exception as e:print(f"错误处理文件 {tif}: {e}")print("所有文件重采样完成。")def main():output_dir2 = r"./010_世界人口数据 _0.1/"    #保存new重采样文件symbol = 0.25 # 重采样大小tasks = [# # ("./01_land_cover", "./China_01_landcover"),# ("./Global_tif_0.1_LC", output_dir2, symbol, "MAJORITY"),("010_世界人口数据", output_dir2, symbol, "NEAREST"),] # 创建进程池,进程数设为CPU核心数pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())# 准备并行执行的任务results = []print(tasks)for input_dir11, output_dir22,cell_size ,resampling_type in tasks:result = pool.apply_async(resample_tifs, args=(input_dir11, output_dir22,cell_size ,resampling_type))results.append(result)# 关闭进程池,等待所有任务完成pool.close()pool.join()print("所有任务已完成。")# 示例用法
if __name__ == "__main__":main()

相关文章:

Arcpy 多线程批量重采样脚本

Arcpy 多线程批量重采样脚本 import arcpy import os import multiprocessingdef resample_tifs(input_folder, output_folder, cell_size0.05, resampling_type"BILINEAR"):"""将指定文件夹下的所有 TIFF 文件重采样到指定分辨率,并输出…...

python 画图例子

目录 多组折线图点坐标的折线图 多组折线图 数据: 第1行为x轴标签第2/3/…行等为数据,其中第一列为标签,后面为y值 图片: 代码: import matplotlib.pyplot as plt# 原始数据字符串 # 第1行为x轴标签 # 第2/3/...行等为数据,其中第一列为标签,后面…...

Win11 22H2/23H2系统11月可选更新KB5046732发布!

系统之家11月22日报道,微软针对Win11 22H2/23H2版本推送了2024年11月最新可选更新补丁KB5046732,更新后,系统版本号升至22621.4541和22631.4541。本次更新后系统托盘能够显示缩短的日期和时间,文件资源管理器窗口很小时搜索框被切…...

【STM32】MPU6050初始化常用寄存器说明及示例代码

一、MPU6050常用配置寄存器 1、电源管理寄存器1( PWR_MGMT_1 ) 此寄存器允许用户配置电源模式和时钟源。 DEVICE_RESET :用于控制复位的比特位。设置为1时复位 MPU6050,内部寄存器恢复为默认值,复位结束…...

深度学习中的mAP

在深度学习中,mAP是指平均精度均值(mean Average Precision),它是深度学习中评价模型好坏的一种指标(metric),特别是在目标检测中。 精确率和召回率的概念: (1).精确率(Precision):预测阳性结果中实际正确的比例(TP / …...

Redis设计与实现 学习笔记 第二十章 Lua脚本

Redis从2.6版本引入对Lua脚本的支持,通过在服务器中嵌入Lua环境,Redis客户端可以使用Lua脚本,直接在服务器端原子地执行多个Redis命令。 其中EVAL命令可以直接对输入的脚本进行求值: 而使用EVALSHA命令则可以根据脚本的SHA1校验…...

大模型(LLMs)推理篇

大模型(LLMs)推理篇 1. 为什么大模型推理时显存涨的那么多还一直占着? 首先,序列太长了,有很多Q/K/V;其次,因为是逐个预测next token,每次要缓存K/V加速解码。 大模型在gpu和cpu上…...

Leetcode 412. Fizz Buzz

Problem Given an integer n, return a string array answer (1-indexed) where: answer[i] “FizzBuzz” if i is divisible by 3 and 5.answer[i] “Fizz” if i is divisible by 3.answer[i] “Buzz” if i is divisible by 5.answer[i] i (as a string) if none of t…...

双因子认证:统一运维平台安全管理策略

01双因子认证概述 双因子认证(Two-Factor Authentication,简称2FA)是一种身份验证机制,它要求用户提供两种不同类型的证据来证明自己的身份。这通常包括用户所知道的(如密码)、用户所拥有的(如…...

CMake笔记:install(TARGETS target,...)无法安装的Debug/lib下

1. 问题描述 按如下CMake代码,无法将lib文件安装到Debug/lib或Release/lib目录下,始终安装在CMAKE_INSTALL_PREFIX/lib下。 install(TARGETS targetCONFIGURATIONS DebugLIBRARY DESTINATION Debug/lib) install(TARGETS targetCONFIGURATIONS Release…...

使用ENSP实现NAT

一、项目拓扑 二、项目实现 1.路由器AR1配置 进入系统试图 sys将路由器命名为R1 sysname R1关闭信息中心 undo info-center enable进入g0/0/0接口 int g0/0/0将g0/0/0接口IP地址配置为12.12.12.1/30 ip address 12.12.12.1 30进入e0/0/1接口 int g0/0/1将g0/0/1接口IP地址配置…...

漫步北京小程序构建智慧出行,打造旅游新业态模式

近年来,北京市气象服务中心持续加强推进旅游气象服务,将旅游气象监测预警基础设施纳入景区配套工程,提升气象和旅游融合发展水平,服务建设高品质智慧旅游强市。 天气条件往往影响着旅游景观的体验,北京万云科技有限公…...

对齐输出

对齐输出 C语言代码C 语言代码Java语言代码Python语言代码 💐The Begin💐点点关注,收藏不迷路💐 输入三个整数,按每个整数占8个字符的宽度,右对齐输出它们。 输入 只有一行,包含三个整数&…...

Wekan看板安装部署与使用介绍

Wekan看板安装部署与使用介绍 1. Wekan简介 ​ Wekan 是一个开源的看板式项目管理工具,它的配置相对简单,因为大多数功能都是开箱即用的。它允许用户以卡片的形式组织和跟踪任务,非常适合敏捷开发和日常任务管理。Wekan 的核心功能包括看板…...

VisionPro 机器视觉案例 之 黑色齿轮

第十五篇 机器视觉案例 之 齿轮齿数检测 文章目录 第十五篇 机器视觉案例 之 齿轮齿数检测1.案例要求2.实现思路2.1 统计齿轮齿数使用模板匹配工具CogPMAlignTool,并从模板匹配工具的结果集中得到每一个齿的中心点。2.2 测量距离需要知道两个坐标点,一个…...

学习python的第十三天之数据类型——函数传参中的传值和传址问题

学习python的第十三天之数据类型——函数传参中的传值和传址问题 函数传参中的传值和传址问题 函数传参的机制可以理解为传值(pass-by-value)和传址(pass-by-reference)的混合体,但实际上更接近于传对象引用&#xff…...

Windows11深度学习环境配置

CUDA、CUDNN 一、安装另一个版本的CUDA 下载.exe文件,网址打不开自己开热点就能解决:CUDA Toolkit 11.2 Downloads | NVIDIA Developer 若遇到“You already have a newer version of the NVIDIA Frameview SDK installed” 1.把电脑已经存在的FrameVi…...

电销老是被标记,该如何解决!!!

在当今的商业世界中,电话销售依然是许多企业拓展业务、接触客户的重要手段。然而,电销人员常常面临一个令人头疼的问题 —— 老是被标记。 一、电销被标记的困扰 当你的电话号码被频繁标记为 “骚扰电话”“推销电话” 等,会带来一系列不良…...

MyBatis入门——基本的增删改查

目录 一、MyBatis简介 二、搭建MyBatis (一)配置依赖 (二)log4j日志功能 (三)数据库配置文件——jdbc.properties (四)创建MyBatis的核心配置文件 (五)使用MyBatisX插件 三、项目其他配置搭建 (一)创建数据库连接工具类 (二)创建表 (三)创建数据库的实体类 (四)Use…...

学习Gentoo系统中二进制软件包和源代码包的概念

Gentoo Linux 是一个以源代码包管理和高度定制化特性著称的Linux发行版。以下是关于Gentoo系统中二进制软件包和源代码包的概念、发展历程以及它们各自的优势: 二进制软件包概念及发展历程: 概念:Gentoo的二进制软件包是指预先编译好的软件包…...

JavaSec-RCE

简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性&#xff0c…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...