神经网络(系统性学习二):单层神经网络(感知机)
此前篇章:
神经网络中常用的激活函数
神经网络(系统性学习一):入门篇
单层神经网络(又叫感知机)
单层网络是最简单的全连接神经网络,它仅有输入层和输出层,没有隐藏层。即,网络的所有输入直接影响到输出。
结构:输入层 → 输出层
特点:
-
只适用于线性可分问题。即,单层网络只能学习并解决线性可分的问题(例如,二维平面上的两类点可以通过一条直线分开)。
-
单层感知机的输出由输入的加权和经过激活函数(如sigmoid)产生。
优点:结构简单,计算量较小。
缺点:无法解决非线性问题,如XOR问题(异或问题)。因为单层网络只能找到线性决策边界,无法处理更复杂的模式。
详细讲解
感知机最初设计用于二分类问题,用来判断输入样本属于正类还是负类。
1、模型结构:
感知机的输入:
-
输入特征向量:
-
权重向量:
-
偏置:b
通常,我们还有一个0项权重,或者说常数项 ,即
对应的权重。这里我们忽略这一非重点的常数项。
加权和:感知机通过将输入特征与权重进行加权求和,再加上偏置项,得到一个总和值。
激活函数:通常是符号函数sign(z)

感知机模型的输出为:

2、基本步骤
感知机的学习过程是个迭代优化过程,通过不断调整权重和偏置,使模型能够正确分类训练数据。
1、初始化权重和偏置:
在训练开始前,感知机的权重 w1,w2,...,wn 和偏置 b 通常被初始化为小的随机值,或者初始化为零。学习率 η也是一个超参数,通常设置为一个小的正数,如 0.01 或 0.1。
2、对每一个样本计算加权和:

3、通过激活函数预测样本分类标签

4、误差计算与权重更新(反向传播):
对于每一个样本,如果预测分类结果正确,则不更新权重和偏置。否则利用预测误差更新权重和偏置:
![]()
![]()
这里的更新规则是通过误差来调整权重和偏置。如果分类正确(即
,则权重和偏置不发生变化。
5、迭代过程(epoch)
对于每个训练样本,逐个计算加权和、应用激活函数、更新权重和偏置。每一轮迭代,会对所有训练样本进行一次更新。通常需要多轮迭代才能训练出一个合适的模型。
停止条件为:
-
达到最大迭代次数;
-
在某一轮迭代中没有发生任何权重更新(即所以样本都分类正确)。

具体例子
假设我们有以下一个简单的训练数据集。

初始化时设定权重 w1=0.1,w2=0.2,偏置 b=0,学习率 η=0.01。
第一轮迭代:
对于样本1,计算加权和:z=0.1×2+0.2×3+0=0.8。 激活函数输出 ,与真实标签一致,因此不更新权重。
对于样本2,计算加权和:z=0.1×1+0.2×1+0=0.3。激活函数输出 ,但真实标签是 -1,所以发生分类错误。更新权重和偏置:
对于样本3,计算加权和:z=0.08×3+0.18×1−0.02=0.4。激活函数输出 ,与真实标签一致,因此不更新权重。
第二轮迭代:
...
一直迭代。
直到所有样本分类正确或达到停止条件,得到了我们要的 w 和 b
# 若文章对大噶有帮助的话,点个赞支持一下叭!
相关文章:
神经网络(系统性学习二):单层神经网络(感知机)
此前篇章: 神经网络中常用的激活函数 神经网络(系统性学习一):入门篇 单层神经网络(又叫感知机) 单层网络是最简单的全连接神经网络,它仅有输入层和输出层,没有隐藏层。即&#x…...
CTF之密码学(BF与Ook)
BrainFuck(通常也被称为Brainfuck或BF)和Ook是两种非常特殊且有趣的编程语言。以下是对这两种语言的详细介绍: 一、BrainFuck 简介: BrainFuck是一种极小化的计算机语言,由Urban Mller在1993年创建。由于“fuck”在英…...
【TEST】Apache JMeter + Influxdb + Grafana
介绍 使用Jmeter发起测试,测试结果存入Influxdb,Grafana展示你的测试结果。 环境 windows 10docker desktopJDK17 安装 Apache JMeter 访问官网(Apache JMeter - Apache JMeter™)下载JMeter(目前最新版本5.6.3&a…...
SpringBoot集成多个rabbitmq
1、pom文件 <!-- https://mvnrepository.com/artifact/org.springframework.boot/spring-boot-starter-amqp --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId><versio…...
从零开始学习数据库 day0(基础)
在当今的信息时代,数据已经成为了企业和组织最重要的资产之一。无论是电子商务平台,社交媒体,还是科研机构,几乎每个地方都离不开数据库。今天,我们将一起走进数据库的世界,学习它的基础知识,帮…...
MongoDB相关问题
视频教程 【GeekHour】20分钟掌握MongoDB Complete MongoDB Tutorial by Net Ninja MongoDB开机后调用缓慢的原因及解决方法 问题分析: MongoDB开机后调用缓慢,通常是由于以下原因导致: 索引重建: MongoDB在启动时会重建索引…...
linux基本命令(1)
1. 文件和目录操作 ls — 列出目录内容 ls # 显示当前目录的文件和目录 ls -l # 显示详细的文件信息(权限、大小、修改时间等) ls -a # 显示所有文件(包括隐藏文件) ls -lh # 显示详细信息并以易读的方式显示文件大小 cd — 改…...
【机器学习】超简明Python基础教程
Python是一种简单易学、功能强大的编程语言,适用于数据分析、人工智能、Web开发、自动化脚本等多个领域。本教程面向零基础学习者,逐步讲解Python的基本概念、语法和操作。 1. 安装与运行 安装Python 从官网 Welcome to Python.org 下载适合自己系统的…...
基于信创环境的信息化系统运行监控及运维需求及策略
随着信息技术的快速发展和国家对信息安全的日益重视,信创环境(信息技术应用创新环境)的建设已成为行业发展的重要趋势。本指南旨在为运维团队在基于信创环境的系统建设及运维过程中提供参考,确保项目顺利实施并满足各项技术指标和…...
【Mysql】视图--介绍和作用 视图的创建
1、介绍 (1)视图(view)是一个虚拟表,非真实存在,其本质是根据SQL语句获取动态的数据集,并为其命名,用户使用时只需使用视图名称既可获取结果集,并可以将其当作表来使用。…...
【JavaEE初阶 — 多线程】定时器的应用及模拟实现
目录 1. 标准库中的定时器 1.1 Timer 的定义 1.2 Timer 的原理 1.3 Timer 的使用 1.4 Timer 的弊端 1.5 ScheduledExecutorService 2. 模拟实现定时器 2.1 实现定时器的步骤 2.1.1 定义类描述任务 定义类描述任务 第一种定义方法 …...
Win10系统开启了文件夹管控(文件夹限制访问)导致软件向系统公共文档目录写入失败的问题排查分享
目录 1、问题说明 2、查看系统是否开启了文件夹管控 3、在未安装杀毒软件的Win10电脑上可能会自动打开文件夹管控 4、到微软官网上查看Windows 安全中心的病毒和威胁防护与文件夹管控的详细说明 5、解决办法探讨 6、最后 C++软件异常排查从入门到精通系列教程(专栏文章列…...
大数据的数据整合
数据整合是对导入的各类源数据进行整合,新进入的源数据匹配到平台上的标准数据,或者成为系统中新的标准数据。数据整合工具对数据关联关系进行设置。经过整合的源数据实现了基本信息的唯一性,同时又保留了与原始数据的关联性。具体功能包括关…...
回溯法经典难题解析
本文将通过几个经典的回溯问题,展示回溯算法的应用及其在解决问题时的核心思想和技巧。这些问题包括全排列、全排列II、N皇后以及数独问题,本文将分别介绍每个问题的思路与实现。 46. 全排列 给定一个不含重复数字的数组 nums ,返回其 所有…...
LLM的原理理解6-10:6、前馈步骤7、使用向量运算进行前馈网络的推理8、注意力层和前馈层有不同的功能9、语言模型的训练方式10、GPT-3的惊人性能
目录 LLM的原理理解6-10: 6、前馈步骤 7、使用向量运算进行前馈网络的推理 8、注意力层和前馈层有不同的功能 注意力:特征提取 前馈层:数据库 9、语言模型的训练方式 10、GPT-3的惊人性能 一个原因是规模 大模型GPT-1。它使用了768维的词向量,共有12层,总共有1.…...
Electron开发构建工具electron-vite(alex8088)添加VueDevTools(VitePlugin)
零、介绍 本文章的electron-vite指的是这个项目👉electron-vite仓库,electron-vite网站 本文章的VueDevTools指的是VueDevTools的Vite插件版👉https://devtools.vuejs.org/guide/vite-plugin 一、有一个用electron-vite创建的项目 略 二、…...
【C++】static修饰的“静态成员函数“--静态成员在哪定义?静态成员函数的作用?
声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用 static修饰的成员函数,称之为静态成员函数。静态成员变量一定要在类外进行初始化 一、静态成员变量 1)特性 所有静态成员为所有类对象所共…...
=computed() =ref()
computed() ref() 在 Vue 中,computed() 和 ref() 是 Vue 3 组合式 API 的核心工具,它们分别用于 计算属性 和 响应式数据。以下是它们的区别和用法: 1. ref() 作用 用于创建响应式的单一数据。可以是基本类型(如字符串、数字、…...
webgl threejs 云渲染(服务器渲染、后端渲染)解决方案
云渲染和流式传输共享三维模型场景 1、本地无需高端GPU设备即可提供三维项目渲染 云渲染和云流化媒体都可以让3D模型共享变得简单便捷。配备强大GPU的远程服务器早就可以处理密集的处理工作,而专有应用程序,用户也可以从任何个人设备查看全保真模型并与…...
【shell编程】函数、正则表达式、文本处理工具
函数 系统函数 常见内置命令 echo打印输出 #!/bin/bash # 输出普通文本 echo "Hello, World!"# 输出变量值 name"Alice" echo "Hello, $name"# 输出带有换行符的文本 echo -n "Hello, " # -n 选项不输出换行 echo "World!&quo…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
