自然语言处理: RAG优化之Embedding模型选型重要依据:mteb/leaderboard榜
本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor
git地址:https://github.com/opendatalab/MinerU
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
近期RAG 应用不断涌现,它们的性能表现各具特色。尽管我们可以通过多个方面(例如查询改写、图像数据处理、分块策略、元数据管理、密集检索、稀疏检索、结果重排、排序融合、提示词优化以及上下文压缩等)逐步优化这些应用,但在选择 SOTA(State-of-the-Art)模型时,参考开源排行榜依然是必不可少的步骤。mteb/leaderboard 是一个极为有用的资源,它能帮助您了解并选择符合您需求的多语言文本生成模型。例如,在RAG系统中,无论是中文还是英文的向量化模型、重排模型或摘要模型的选择,都可以通过该榜单获得直观且量化的参考依据。
MTEB Leaderboard
MTEB(Multilingual Text-to-Text Evaluation Benchmark)是一个多语言文本嵌入的评估基准,旨在评估和比较不同多语言文本生成模型的性能。排行榜页面展示了各种模型在多个任务上的表现,这些任务可能包括但不限于翻译、摘要、问答等。
-
https://huggingface.co/spaces/mteb/leaderboard
-
C-MTEB(Chinese Massive Text Embedding Benchmark)中文语义向量评测基准
-
评测任务:包括涵盖112种语言的58个数据集
在 MTEB 的排行榜页面上,可以看到:
- 不同模型的名称 :列出参与评估的各种模型。
- 各项任务的得分 :每个模型在不同任务上的性能评分。
- 综合排名 :根据各项任务的得分对模型进行综合排名。
这个排行榜页面对于研究人员和开发者非常有用,因为它提供了:
- 模型性能的直观对比 :帮助选择最适合特定任务的模型。
- 最新进展的跟踪 :了解当前多语言文本生成领域的最新进展和技术趋势。
- 基准测试的参考 :为新模型的开发和评估提供基准。
如何使用
- 查看模型性能 :浏览排行榜,了解不同模型在各个任务上的表现。
- 获取模型信息 :点击模型名称或链接,可以跳转到模型的详细页面,获取更多信息和使用方法。
- 参与评估 :如果你有自己的模型,可以按照 MTEB 的评估标准提交模型进行测试,加入排行榜。
了解任务相关概念
TASK CATEGORY(任务类别)
枚举值 | 中文翻译 | 含义解释 |
---|---|---|
s2s | 句子到句子 | 任务涉及将单个句子转换或处理成另一个句子。 |
s2p | 句子到段落 | 任务涉及将单个句子转换或处理成段落。 |
p2p | 段落到段落 | 任务涉及将段落转换或处理成另一个段落。 |
TASK TYPE(任务类型)
枚举值 | 中文翻译 | 含义解释 |
---|---|---|
Retrieval | 检索 | 从大量数据中检索出相关信息。 |
Reranking | 重排 | 根据某种标准重新排序数据。 |
STS | 语义文本相似度 | 评估两个文本之间的语义相似度。 |
Summarization | 摘要 | 生成文本的简短摘要。 |
InstructionRetrieval | 指令检索 | 检索与特定指令相关的信息。 |
Speed | 速度 | 评估处理或响应的速度。 |
BitextMining | 双语文本挖掘 | 从双语文本中挖掘信息。 |
Classification | 分类 | 将数据分配到预定义的类别中。 |
MultilabelClassification | 多标签分类 | 为数据分配多个类别标签。 |
Clustering | 聚类 | 将数据分组,使得同一组内的数据点相似度高。 |
PairClassification | 配对分类 | 对成对的数据进行分类。 |
TASK SUBTYPE(任务子类型)
枚举值 | 中文翻译 | 含义解释 |
---|---|---|
Article retrieval | 文章检索 | 从大量文章中检索出与查询相关的文档。 |
Conversational retrieval | 对话检索 | 检索与对话上下文相关的信息或回复。 |
Dialect pairing | 方言配对 | 识别和匹配不同方言之间的对应关系。 |
Dialog Systems | 对话系统 | 构建能够与用户进行自然对话的系统。 |
Discourse coherence | 话语连贯性 | 评估或生成连贯、逻辑一致的长篇话语。 |
Language identification | 语言识别 | 识别文本所使用的语言。 |
Linguistic acceptability | 语言可接受性 | 评估文本是否符合语言学的规范。 |
Political classification | 政治分类 | 根据政治倾向对信息进行分类。 |
Question answering | 问答 | 回答用户提出的问题。 |
Sentiment/Hate speech | 情感/仇恨言论 | 识别文本中的情感倾向或仇恨言论。 |
Thematic clustering | 主题聚类 | 将文本根据主题进行分组。 |
Scientific Reranking | 科学重排 | 对科学文献或信息进行重新排序。 |
Claim verification | 事实核查 | 验证声明或信息的真实性。 |
Topic classification | 主题分类 | 将文本按照主题进行分类。 |
Code retrieval | 代码检索 | 检索与编程问题相关的代码片段。 |
Cross-Lingual Semantic Discrimination | 跨语言语义区分 | 区分不同语言中相似词汇的语义差异。 |
Textual Entailment | 文本蕴含 | 判断一个句子是否能够从另一个句子逻辑上推导出来。 |
Counterfactual Detection | 反事实检测 | 识别和处理反事实或假设性陈述。 |
Emotion classification | 情感分类 | 对文本中表达的情感进行分类。 |
Reasoning as Retrieval | 推理检索 | 通过检索相关信息来辅助推理过程。 |
Duplicate Detection | 重复检测 | 识别和处理重复或相似的内容。 |
C-MTEB(Chinese Massive Text Embedding Benchmark)榜单是专门用来评估中文Embedding模型的多任务混合评测榜单,包含了Classification、Clustering、Pair Classification、Reranking、Retrieval、STS六种任务类型,共35个公开数据集。
其中, Retrieval作为检索场景下最常用、最重要的测试任务 ,被广泛应用与大模型应用的落地场景,Retrieval任务包括查询语句和语料库,对于每个查询,从语料库中查询最相似的top-k个文档,使用BEIR相同的设置,nDCG@10是主要指标。
Retrieval是C-MTEB中的一个任务方向,共包含8个 中文文本数据集 ,涉及医疗、政策、电商、娱乐等各个方面。数据集主要有三部分组成:query、corpus、dev,其中query为中文问题,corpus为中文文档,包括了query的回答,该任务主要就是从海量corpus中检索出与query最为相关的内容。
Retrieval任务的8个子任务 :
- Ecom:中文电商领域检索任务;
- Medical:中文医疗领域检索任务;
- Covid:中文政策文件类检索任务;
- Video:中文娱乐视频领域检索任务;
- T2:来源于搜索引擎的段落排序中文基准测试;
- Dureader:来源于百度搜索引擎的段落检索任务;
- Mmarco:中文微软问答文摘检索测试;
- Cmedqa2:中文社区医疗问答测试
相关文章:

自然语言处理: RAG优化之Embedding模型选型重要依据:mteb/leaderboard榜
本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor git地址:https://github.com/opendatalab/MinerU 写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!! 写在前面: 笔者更新不易,希望走过路…...

鸿蒙主流路由详解
鸿蒙主流路由详解 Navigation Navigation更适合于一次开发,多端部署,也是官方主流推荐的一种路由控制方式,但是,使用起来入侵耦合度高,所以,一般会使用HMRouter,这也是官方主流推荐的路由 Navigation官网地址 个人源码地址 路由跳转 第一步-定义路由栈 Provide(PageInfo) pag…...
C#构建一个简单的循环神经网络,模拟对话
循环神经网络(Recurrent Neural Network, RNN)是一种用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN具有内部记忆能力,可以捕捉到序列中元素之间的依赖关系。这种特性使得RNN在自然语言处理、语音识别、时间序列预…...
Linux上安装单机版Kibana6.8.1
1. 下载安装包 kibana-6.8.1-linux-x86_64.tar.gz 链接:https://pan.baidu.com/s/1b4kION9wFXIVHuWDn2J-Aw 提取码:rdrc 2. Kibana启动不能使用root用户,使用ES里创建的elsearch用户,进行赋权: chown -R elsearch:els…...

短视频矩阵矩阵,矩阵号策略
随着数字媒体的迅猛发展,短视频平台已经成为企业和个人品牌推广的核心渠道。在这一背景下,短视频矩阵营销策略应运而生,它通过高效整合和管理多个短视频账号,实现资源的最优配置和营销效果的最大化。本文旨在深入探讨短视频矩阵的…...

Rust 力扣 - 2266. 统计打字方案数
文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 这题可以先求按了多少次相同连续的按钮,所有的连续相同按钮表示的方案数的乘积就是本题答案 我们的关键问题就转换成了按n个连续相同按钮表示的方案数 设f(i)表示按i个连续相同按钮表示的方案数 如…...

【大数据技术与开发实训】携程景点在线评论分析
景点在线评论分析 题目要求实验目标技术实现数据采集获取所有相关景点页面的 URL获取所有相关景点对应的 poiId 及其他有用信息通过 poiId 获取所有景点的全部评论数据采集结果 数据预处理景点信息的数据预处理查看数据基本信息缺失值处理 用户评论的数据处理缺失值处理分词、去…...
46.坑王驾到第十期:vscode 无法使用 tsc 命令
点赞收藏加关注,你也能住大别墅! 一、问题重现 上一篇帖子记录了我昨天在mac上安装typescript及调试的过程。今天打开vscode准备开干的时候,发现tsc命令又无法使用了,然后按照昨天的方法重新安装调试后又能用了,但是关…...

postman 调用 下载接口(download)使用默认名称(response.txt 或随机名称)
官网地址:https://www.postman.com 介绍 Postman 是一款流行的 API 开发和测试工具,用于发送 HTTP 请求、测试接口、调试服务器响应以及进行 API 文档管理。它支持多种请求类型(如 GET、POST、PUT、DELETE 等),并且功能…...

单片机_简单AI模型训练与部署__从0到0.9
IDE: CLion MCU: STM32F407VET6 一、导向 以求知为导向,从问题到寻求问题解决的方法,以兴趣驱动学习。 虽从0,但不到1,剩下的那一小步将由你迈出。本篇主要目的是体验完整的一次简单AI模型部署流程&#x…...

对撞双指针(七)三数之和
15. 三数之和 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组…...

【Ubuntu24.04】服务部署(虚拟机)
目录 0 背景1 安装虚拟机1.1 下载虚拟机软件1.2 安装虚拟机软件1.2 安装虚拟电脑 2 配置虚拟机2.1 配置虚拟机网络及运行初始化脚本2.2 配置服务运行环境2.2.1 安装并配置JDK172.2.2 安装并配置MySQL8.42.2.3 安装并配置Redis 3 部署服务4 总结 0 背景 你的服务部署在了你的计算…...
timm库加载的模型可视化
在深度学习中,模型的可视化有助于了解模型的结构和层级关系。以下是几种方式来可视化使用 timm 库加载的模型: 打印模型结构 torch.nn.Module 的子类(包括 timm 的模型)可以通过 print() 查看其结构:import timm# 加…...
服务限流、降级、熔断-SpringCloud
本文所使用的组件:Nacos(服务中心和注册中心)、OpenFeign(服务调用)、Sentinel(限流、降级)、Hystrix(熔断) 项目结构: service-provider:提供服…...

2024最新YT-DLP使用demo网页端渲染
2024最新YT-DLP使用demo网页端渲染 前提摘要1.使用python的fastapi库和jinjia2库进行前端渲染2.代码实现1)目录结构2)代码style.cssindex.htmlresult.htmlmain.pyrun.py 3)运行测试命令端运行 3.项目下载地址 前提摘要 2024最新python使用yt…...

《第十部分》1.STM32之通信接口《精讲》之IIC通信---介绍
经过近一周的USART学习,我深刻体会到通信对单片机的重要性。它就像人类的手脚和大脑,只有掌握了通信技术,单片机才能与外界交互,展现出丰富多彩的功能,变得更加强大和实用。 单片机最基础的“语言”是二进制。可惜&am…...

wireshark使用lua解析自定义协议
wireshark解析自定义协议 1.自定义的lua放入路径2.修改init.lua2.1 开启lua2.2 init.lua文件最后加入自己的lua文件位置,这里需要确保与自己的文件名相同 3.编写lua4.编写c抓包5.wireshark添加自定义协议如何加调试信息 1.自定义的lua放入路径 一般是自己软件的安装…...

(Keil)MDK-ARM各种优化选项详细说明、实际应用及拓展内容
参考 MDK-ARM各种优化选项详细说明、实际应用及拓展内容 本文围绕MDK-ARM优化选项,以及相关拓展知识(微库、实际应用、调试)进行讲述,希望对你今后开发项目有所帮助。 1 总述 我们所指的优化,主要两方面: 1.代码大小(Size) 2.代码性能(运行时间) 在MDK-ARM中,优…...

Qt实现可拖拽的矩形
之前项目上需要用Qt来绘制可拖拽改变形状的矩形。看了Qt Graphics相关的内容,虽然对Qt怎么添加图元的有了些了解,但是具体如何实现拖拽效果,一时也没有什么好的想法。还好网上有人分享的例子,很受启发。后来又回顾了一下这部分的代…...
CentOS:A服务器主动给B服务器推送(上传),B服务器下载A服务器文件(下载)
Linux:常识(bash: ip command not found )_bash: ip: command not found-CSDN博客 rsync 中断后先判断程序是否自动重连:ps aux | grep rsync 查看目录/文件是否被使用(查询线程占用):lsof /usr/local/bin/mongodump/.B_database1.6uRCTp 场景:MongoDB中集合非常大需要…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...