当前位置: 首页 > news >正文

对撞双指针(七)三数之和

15. 三数之和

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != ji != kj != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例 1:

输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。

示例 2:

输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。

示例 3:

输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。

首先利用双指针思想进行寻找合适的三个数,再利用set进行去重。

class Solution {
public:vector<vector<int>> threeSum(vector<int>& nums) {int n = nums.size();set<vector<int>> res;sort(nums.begin(), nums.end());for(int i = n-1; i > 1; i--){int c = nums[i];int temp = 0-c;int left = 0, right = i-1;while(left < right){if(nums[left] + nums[right] < temp)left++;else if(nums[left] + nums[right] > temp)right--;else{res.insert({nums[left], nums[right], c});left++;}}}vector<vector<int>> ret;for(auto it : res){ret.push_back(it);}return ret;}
};

离谱……………………

对于去重的方法有进一步优化

 将c从右向左固定:

class Solution {
public:vector<vector<int>> threeSum(vector<int>& nums) {int n = nums.size();vector<vector<int>> ret;sort(nums.begin(), nums.end());    1、排序for(int i = n-1; i > 1; ){int c = nums[i];int temp = 0-c;int left = 0, right = i-1;while(left < right)  2、此处使用双指针思想{if(nums[left] + nums[right] < temp)left++;else if(nums[left] + nums[right] > temp)right--;else{ret.push_back({nums[left], nums[right], c});int flag = nums[left++];while(left<right && nums[left] == flag)   left++;        3、对于去重操作的优化①flag = nums[right--];while(left<right && nums[right] == flag)right--;}}i--;                       4、去重的优化②while(i>1 && nums[i+1] == nums[i]) // 把whlie写错成if调试半天才发现i--;}return ret;}
};

将c从左向右固定

class Solution {
public:vector<vector<int>> threeSum(vector<int>& nums) {int n = nums.size();sort(nums.begin(), nums.end());    // 1、排序vector<vector<int>> ret;for(int i = 0; i < n; ){if(nums[i] > 0) break;    // 2、作一个小优化,如果左边数大于零则无法满足和为0int left = i+1, right = n-1;int target = -nums[i];while(left < right)        // 3、双指针进行寻找{int sum = nums[left] + nums[right];if(sum < target)    left++;else if(sum > target)   right--;else{ret.push_back({nums[i], nums[left++], nums[right--]});while(left < right && nums[left] == nums[left-1])left++; // 当left位置重复时,left后移while(left < right && nums[right] == nums[right+1])right--; // 当right位置重复时,right左移}}i++;while(i < n && nums[i]==nums[i-1])i++;}return ret;}
};

相关文章:

对撞双指针(七)三数之和

15. 三数之和 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元组…...

【Ubuntu24.04】服务部署(虚拟机)

目录 0 背景1 安装虚拟机1.1 下载虚拟机软件1.2 安装虚拟机软件1.2 安装虚拟电脑 2 配置虚拟机2.1 配置虚拟机网络及运行初始化脚本2.2 配置服务运行环境2.2.1 安装并配置JDK172.2.2 安装并配置MySQL8.42.2.3 安装并配置Redis 3 部署服务4 总结 0 背景 你的服务部署在了你的计算…...

timm库加载的模型可视化

在深度学习中&#xff0c;模型的可视化有助于了解模型的结构和层级关系。以下是几种方式来可视化使用 timm 库加载的模型&#xff1a; 打印模型结构 torch.nn.Module 的子类&#xff08;包括 timm 的模型&#xff09;可以通过 print() 查看其结构&#xff1a;import timm# 加…...

服务限流、降级、熔断-SpringCloud

本文所使用的组件&#xff1a;Nacos&#xff08;服务中心和注册中心&#xff09;、OpenFeign&#xff08;服务调用&#xff09;、Sentinel&#xff08;限流、降级&#xff09;、Hystrix&#xff08;熔断&#xff09; 项目结构&#xff1a; service-provider&#xff1a;提供服…...

2024最新YT-DLP使用demo网页端渲染

2024最新YT-DLP使用demo网页端渲染 前提摘要1.使用python的fastapi库和jinjia2库进行前端渲染2.代码实现1&#xff09;目录结构2&#xff09;代码style.cssindex.htmlresult.htmlmain.pyrun.py 3&#xff09;运行测试命令端运行 3.项目下载地址 前提摘要 2024最新python使用yt…...

《第十部分》1.STM32之通信接口《精讲》之IIC通信---介绍

经过近一周的USART学习&#xff0c;我深刻体会到通信对单片机的重要性。它就像人类的手脚和大脑&#xff0c;只有掌握了通信技术&#xff0c;单片机才能与外界交互&#xff0c;展现出丰富多彩的功能&#xff0c;变得更加强大和实用。 单片机最基础的“语言”是二进制。可惜&am…...

wireshark使用lua解析自定义协议

wireshark解析自定义协议 1.自定义的lua放入路径2.修改init.lua2.1 开启lua2.2 init.lua文件最后加入自己的lua文件位置&#xff0c;这里需要确保与自己的文件名相同 3.编写lua4.编写c抓包5.wireshark添加自定义协议如何加调试信息 1.自定义的lua放入路径 一般是自己软件的安装…...

(Keil)MDK-ARM各种优化选项详细说明、实际应用及拓展内容

参考 MDK-ARM各种优化选项详细说明、实际应用及拓展内容 本文围绕MDK-ARM优化选项,以及相关拓展知识(微库、实际应用、调试)进行讲述,希望对你今后开发项目有所帮助。 1 总述 我们所指的优化,主要两方面: 1.代码大小(Size) 2.代码性能(运行时间) 在MDK-ARM中,优…...

Qt实现可拖拽的矩形

之前项目上需要用Qt来绘制可拖拽改变形状的矩形。看了Qt Graphics相关的内容&#xff0c;虽然对Qt怎么添加图元的有了些了解&#xff0c;但是具体如何实现拖拽效果&#xff0c;一时也没有什么好的想法。还好网上有人分享的例子&#xff0c;很受启发。后来又回顾了一下这部分的代…...

CentOS:A服务器主动给B服务器推送(上传),B服务器下载A服务器文件(下载)

Linux:常识(bash: ip command not found )_bash: ip: command not found-CSDN博客 rsync 中断后先判断程序是否自动重连:ps aux | grep rsync 查看目录/文件是否被使用(查询线程占用):lsof /usr/local/bin/mongodump/.B_database1.6uRCTp 场景:MongoDB中集合非常大需要…...

Oracle 执行计划查看方法汇总及优劣对比

在 Oracle 数据库中&#xff0c;查看执行计划是优化 SQL 语句性能的重要工具。以下是几种常用的查看执行计划的方法及其优劣比较&#xff1a; 1. 使用 EXPLAIN PLAN FOR 和 DBMS_XPLAN.DISPLAY 方法 执行 EXPLAIN PLAN FOR 语句&#xff1a; EXPLAIN PLAN FOR SELECT * FROM …...

TCL大数据面试题及参考答案

Mysql 索引失效的场景 对索引列进行运算或使用函数:当在索引列上进行数学运算、函数操作等,索引可能失效。例如,在存储年龄的列上建立了索引,若查询语句是 “SELECT * FROM table WHERE age + 1 = 20”,这里对索引列 age 进行了加法运算,数据库会放弃使用索引而进行全表扫…...

九、FOC原理详解

1、FOC简介 FOC&#xff08;field-oriented control&#xff09;为磁场定向控制&#xff0c;又称为矢量控制&#xff08;vectorcontrol&#xff09;&#xff0c;是目前无刷直流电机&#xff08;BLDC&#xff09;和永磁同步电机&#xff08;PMSM&#xff09;高效控制的最佳选择…...

vue页面成绩案例(for渲染表格/删除/添加/统计总分/平均分/不及格显红色/输入内容去首尾空格trim/输入内容转数字number)

1.使用v-if 和v-else 完成<tbody>标签的条件渲染 2.v-for完成列表渲染 3.:class完成分数标红的条件控制 删哪个就传哪个的id&#xff0c;基于这个id去过滤掉相同id的项&#xff0c;把剩下的项返回 a标签的默认点击事件会跳转 这里要禁止默认事件 即使用click.provent 就…...

STM32编程小工具FlyMcu和STLINK Utility 《通俗易懂》破解

FlyMcu FlyMcu 模拟仿真软件是一款用于 STM32 芯片 ISP 串口烧录程序的专用工具&#xff0c;免费&#xff0c;且较为非常容易下手&#xff0c;好用便捷。 注意&#xff1a;STM32 芯片的 ISP 下载&#xff0c;只能使用串口1&#xff08;USART1&#xff09;&#xff0c;对应的串口…...

Centos使用docker搭建Graylog日志平台

日志管理系统有很多&#xff0c;比如ELK,Graylog&#xff0c;LokiGrafanaPromtail 适用场景&#xff1a; 1.如果需求复杂&#xff0c;服务器资源不受限制&#xff0c;推荐使用ELK&#xff08;Logstash Elasticsearch Kibana&#xff09;方案&#xff1b; 2.如果需求仅是将…...

自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例

Kafka&#xff1a;分布式消息系统的核心原理与安装部署-CSDN博客 自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例-CSDN博客 Kafka 生产者全面解析&#xff1a;从基础原理到高级实践-CSDN博客 Kafka 生产者优化与数据处理经验-CSDN博客 Kafka 工作流程解析&#xff1a…...

【SQL】【数据库】语句翻译例题

SQL自然语言到SQL翻译知识点 以下是将自然语言转化为SQL语句的所有相关知识点&#xff0c;分门别类详细列出&#xff0c;并结合技巧说明。 1. 数据库操作 创建数据库 自然语言&#xff1a;创建一个名为“TestDB”的数据库。 CREATE DATABASE TestDB;技巧&#xff1a;识别**“创…...

linux基本命令2

7. 文件查找和搜索 (继续) find — 查找文件 find /path/to/search -name "file_name" # 根据名称查找文件 find /path/to/search -type f # 查找所有普通文件 find /path/to/search -type d # 查找所有目录 find /path/to/search -name "*.txt" # 查找…...

Spring Boot项目集成Redisson 原始依赖与 Spring Boot Starter 的流程

Redisson 是一个高性能的 Java Redis 客户端&#xff0c;提供了丰富的分布式工具集&#xff0c;如分布式锁、Map、Queue 等&#xff0c;帮助开发者简化 Redis 的操作。在集成 Redisson 到项目时&#xff0c;开发者通常有两种选择&#xff1a; 使用 Redisson 原始依赖。使用 Re…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...

EEG-fNIRS联合成像在跨频率耦合研究中的创新应用

摘要 神经影像技术对医学科学产生了深远的影响&#xff0c;推动了许多神经系统疾病研究的进展并改善了其诊断方法。在此背景下&#xff0c;基于神经血管耦合现象的多模态神经影像方法&#xff0c;通过融合各自优势来提供有关大脑皮层神经活动的互补信息。在这里&#xff0c;本研…...

数据挖掘是什么?数据挖掘技术有哪些?

目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...

MeanFlow:何凯明新作,单步去噪图像生成新SOTA

1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架&#xff0c;旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念&#xff0c;这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换&#xff0c;显…...

Yolo11改进策略:Block改进|FCM,特征互补映射模块|AAAI 2025|即插即用

1 论文信息 FBRT-YOLO&#xff08;Faster and Better for Real-Time Aerial Image Detection&#xff09;是由北京理工大学团队提出的专用于航拍图像实时目标检测的创新框架&#xff0c;发表于AAAI 2025。论文针对航拍场景中小目标检测的核心难题展开研究&#xff0c;重点解决…...