数据结构 ——— 直接选择排序算法的实现
目录
直接选择排序算法的思想
优化直接选择排序算法的思想
代码实现(默认升序)
直接选择排序算法的思想
直接选择排序算法的思想类似与直接插入排序
区别在于从大到小选择最小的元素或者最大的元素直接放在元素应该停留的位置
每次从待排序的元素中选出最小或者最大的元素(根据降序或者升序选择)
存放在序列的起始位置,直到全部待排序的数据元素排完为止
优化直接选择排序算法的思想
优化前:
每次从待排序的元素中选出最小或者最大的元素,存放到应该停留的位置,再次选出次大或者次小的数,存放到应该停留的位置,这样做的话每次只能选出一个元素
优化后:
而可以优化的是每次在待排序的元素中选出最大和最小的两个元素,放在各自最后应该停留的位置
再选出次大和次小的元素,放在最后改停留的位置
代码实现(默认升序)
代码演示:
void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}void SelectSort(int* a, int size)
{int left = 0;int right = size - 1;while (left < right){int min = left;int max = right;for (int i = left; i <= right; i++){if (a[i] < a[min]){min = i;}if (a[i] > a[max]){max = i;}}Swap(&a[left], &a[min]);if (max == left){max = min;}Swap(&a[right], &a[max]);left++;right--;}
}
代码解析:
left 表示数组首元素的下标,right 表示数组尾元素的下标
以排成升序为例
找到数组中最小的元素时就放在下标为 left 的元素处
注意:这里的放入不是直接覆盖首元素,而是和首元素交换
且找到数组中最大的元素时就放在下标为 right 的元素处,同样是交换
再找到数组中次小的元素和次大的元素进行交换………………
每交换一对元素,那么 left 就递增 1 ,而 right 就递减 1
直到 left == right 时,说明所有元素都停留再了最后应该停留的位置
这时的数组就是升序
min 是数组中最小元素的下标,而 max 是数组中最大元素的下标
再通过 left 和 right 为数组的区间来遍历数组,找到最小元素的下标赋值给 min ,找到最大元素的下标赋值给 max
这样做的原因是:因为最开始 left 是 0 ,right 是 size-1,找到了最小和最大的元素后,放在了首尾位置,那么数组首尾位置就不用再遍历了,而且刚好 left 递增了 1,right 递减了 1,如果找到了次大的元素和次小的元素时同样如此,所以用 left 和 right 控制数组的区间刚好合适
找到最小元素的下标 min 时,和首元素的下标 left 交换
找到最大元素的下标 max 时,和尾元素的下标 right 交换
交换时需要注意一种情况,因为是先把最小的元素交换到数组首元素的位置
当如果首元素就是最大的元素时,就会出问题,因为这时的 max 就在首元素的位置
但是已经把最小的元素交换到这里了,而 max 的位置没有更新,那么如果再交换最大元素和尾元素时,就会发生错乱,就会把最小的元素,交换到尾元素去,这样就不能实现升序了
改正的办法是判断 max 是否和 left 相同,如果相同的话,就更新 max 的位置
因为最开始 min 和 left 交换了,所以此时最大的元素就在 min 处,直接把 min 赋值给 max 即可
代码验证:
相关文章:
数据结构 ——— 直接选择排序算法的实现
目录 直接选择排序算法的思想 优化直接选择排序算法的思想 代码实现(默认升序) 直接选择排序算法的思想 直接选择排序算法的思想类似与直接插入排序 区别在于从大到小选择最小的元素或者最大的元素直接放在元素应该停留的位置每次从待排序的元素中选…...
MySQL中的ROW_NUMBER窗口函数简单了解下
ROW_NUMBER() 是 MySQL8引入的窗口函数之一,它为查询结果集中的每一行分配一个唯一的顺序号(行号)。这个顺序号是基于窗口函数的 ORDER BY 子句进行排序的,可以根据指定的排序顺序生成连续的整数值。 ROW_NUMBER() 在分页、去重、…...
day24|leetCode 93.复原IP地址 , 78.子集 , 90.子集II
8.复原ip地址 有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 . 分隔。 例如:"0.1.2.201" 和"192.168.1.1" 是 有效 IP 地址,但是 "…...
RocketMQ: Broker 使用指南
Broker 配置参数 获取 Broker 的默认配置 $ sh mqbroker -m Broker 启劢时,如何加载配置 ### 第一步生成 Broker 默认配置模版 sh mqbroker -m > broker.p ### 第二步修改配置文件, broker.p ### 第三步加载修改过的配置文件 nohup sh mqbroker -c broker.pBrok…...
【Linux 篇】Docker 的容器之海与镜像之岛:于 Linux 系统内探索容器化的奇妙航行
文章目录: 【Linux 篇】Docker 的容器之海与镜像之岛:于 Linux 系统内探索容器化的奇妙航行前言安装docker-centos7 【Linux 篇】Docker 的容器之海与镜像之岛:于 Linux 系统内探索容器化的奇妙航行 💬欢迎交流:在学习…...
5、AI测试辅助-生成测试用例思维导图
AI测试辅助-生成测试用例思维导图 创建测试用例两种方式1、Plantuml思维导图版本 (不推荐)2、Markdown思维导图版本(推荐) 创建测试用例两种方式 完整的测试用例通常需要包含以下的元素: 1、测试模块 2、测试标题 3、前置条件 4、…...
nature communications论文 解读
题目《Transfer learning with graph neural networks for improved molecular property prediction in the multi-fidelity setting》 这篇文章主要讨论了如何在多保真数据环境(multi-fidelity setting)下,利用图神经网络(GNNs&…...
基于Java Springboot公园管理系统
一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 数据…...
神经网络(系统性学习三):多层感知机(MLP)
相关文章: 神经网络中常用的激活函数 神经网络(系统性学习一):入门篇 神经网络(系统性学习二):单层神经网络(感知机) 多层感知机(MLP) 多层感…...
07-SpringCloud-Gateway新一代网关
一、概述 1、Gateway介绍 官网:https://spring.io/projects/spring-cloud-gateway Spring Cloud Gateway组件的核心是一系列的过滤器,通过这些过滤器可以将客户端发送的请求转发(路由)到对应的微服务。 Spring Cloud Gateway是加在整个微服务最前沿的防…...
HTML 表单实战:从创建到验证
HTML表单是用于收集用户输入数据的一种方式,可以用于创建各种类型的表单,例如登录表单、注册表单、调查问卷表单等。本文将详细介绍表单元素的使用,并利用JavaScript实现对表单数据的验证。 HTML表单元素的使用 输入框<input> <i…...
【redis 】string类型详解
string类型详解 一、string类型的概念二、string类型的常用指令2.1 SET2.2 GET2.3 MSET2.4 MGET2.5 SETNX2.6 INCR2.7 INCRBY2.8 DECR2.9 DECRBY2.10 INCRBYFLOAT2.11 APPEND2.12 GETRANGE2.13 SETRANGE2.14 STRLEN 三、string类型的命令小结四、string类型的内部编码五、strin…...
Vue.js 学习总结(13)—— Vue3 version 计数介绍
前言 Vue3.5 提出了两个重要概念:version计数和双向链表,作为在内存和计算方面性能提升的最大功臣。既然都重要,那就单挑 version 计数来介绍,它在依赖追踪过程中,起到快速判断依赖项有没有更新的作用,所以…...
【数据结构】【线性表】一文讲完队列(附C语言源码)
队列 队列的基本概念基本术语基本操作 队列的顺序实现顺序队列结构体的创建顺序队列的初始化顺序队列入队顺序队列出队顺序队列存在的问题分析循环队列代码汇总 队列的链式实现链式队列的创建链式队列初始化-不带头结点链式队列入队-不带头节点链式队列出队-不带头结点带头结点…...
2024年11月最新 Alfred 5 Powerpack (MACOS)下载
在现代数字化办公中,我们常常被繁杂的任务所包围,而时间的高效利用成为一项核心需求。Alfred 5 Powerpack 是一款专为 macOS 用户打造的高效工作流工具,以其强大的定制化功能和流畅的用户体验,成为众多效率爱好者的首选。 点击链…...
ODBC连接PostgreSQL数据库后,网卡DOWN后,客户端进程阻塞问题解决方法
问题现象:数据库客户端进程数据库连接成功后,再把跟数据库交互的网卡down掉,客户端进程就会阻塞,无法进行其他处理。该问题跟TCP keepalive机制有关。 可以在odbc.ini文件中增加相应的属性来解决,在odbc.ini 增加如下…...
VsCode使用git提交很慢(一直显示在提交)_vscode commit很慢解决方法
VsCode使用git提交很慢(一直显示在提交)_vscode commit很慢...
linux从0到1——shell编程9
声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关&a…...
计算机网络技术专业,热门就业方向和就业前景
前言 在数字化飞速发展的今天,计算机网络技术专业成为了众多学子和职场人士关注的焦点。这一专业不仅涵盖了计算机硬件、软件和网络通信等多个领域的知识,更在就业市场上展现出强大的竞争力。本文将带您一探计算机网络技术专业的就业方向和就业前景&…...
C++中定义类型名的方法
什么是 C 中的类型别名和 using 声明? 类型别名与using都是为了提高代码的可读性。 有两种方法可以定义类型别名 一种是使用关键字typedef起别名使用别名声明来定义类型的别名,即使用using. typedef 关键字typedef作为声明语句中的基本数据类型的一…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
