Python 中如何处理异常?
在Python中,异常处理是一种重要的编程技术,它允许开发者优雅地处理程序运行过程中出现的错误或异常情况,而不是让程序直接崩溃。
通过异常处理,我们可以使程序更加健壮、用户友好。
异常处理的基本结构
Python中最基本的异常处理结构是try-except语句。这个结构的基本形式如下:
try:# 尝试执行的代码块result = 10 / 0 # 这里会产生一个除以零的错误
except ZeroDivisionError:# 如果try块中的代码产生了ZeroDivisionError,则执行这里的代码print("不能除以零!")
在这个例子中,当尝试执行10 / 0时,会抛出一个ZeroDivisionError异常。
由于我们已经预见了这种可能发生的错误,并使用了except子句来捕获它,因此程序不会因为未处理的异常而终止,而是继续执行except块中的代码。
处理多种异常
如果一段代码可能会产生多种类型的异常,可以使用多个except子句来分别处理这些异常:
try:# 尝试打开不存在的文件with open('nonexistent_file.txt', 'r') as file:content = file.read()
except FileNotFoundError:print("文件不存在,请检查文件路径是否正确。")
except IOError:print("发生输入输出错误。")
这里,FileNotFoundError和IOError分别处理了文件不存在和读取文件时可能出现的错误。
使用else子句
有时候,我们希望在没有异常发生的情况下执行某些代码。这可以通过添加else子句来实现:
try:num1 = int(input("请输入第一个数字: "))num2 = int(input("请输入第二个数字: "))
except ValueError:print("输入无效,请确保输入的是整数。")
else:# 只有当try块中没有发生异常时,才会执行else块print(f"两数之和为: {num1 + num2}")
在这个例子中,如果用户输入的不是整数,ValueError会被触发,相应的异常处理代码将被执行。
如果没有异常发生,那么else块中的代码将被执行,计算并显示两个数字的和。
使用finally子句
无论是否发生异常,finally子句中的代码都会被执行。这对于确保资源(如文件或网络连接)被正确关闭非常有用:
try:file = open('example.txt', 'r')data = file.read()
except IOError:print("无法读取文件。")
finally:file.close() # 确保文件总是被关闭
抛出异常
除了处理异常外,有时我们也需要主动抛出异常。这通常用于强制函数调用者处理某种特定的情况:
def divide(x, y):if y == 0:raise ValueError("除数不能为零。") # 主动抛出异常return x / ytry:result = divide(10, 0)
except ValueError as e:print(e) # 输出错误信息
在这个例子中,如果尝试将任何数字除以零,函数divide会抛出一个ValueError异常。
调用者需要通过try-except结构来处理这个异常。
日常开发中的注意事项
-
避免捕捉所有异常:使用
except:来捕捉所有异常是一种不推荐的做法,因为它会使调试变得困难,并可能导致隐藏其他错误。应当尽可能具体地指定要捕获的异常类型。 -
保持异常处理代码的简洁性:异常处理代码应尽量简短,只处理与异常相关的问题。复杂的逻辑应该放在
try块之外。 -
使用异常来控制流程:虽然异常主要用来处理错误情况,但它们也可以用来控制程序流程,特别是在解析复杂数据结构或处理外部API响应时。
-
记录异常信息:在生产环境中,应该记录异常及其上下文信息,以便于后续的调试和分析。可以使用Python的日志模块来完成这一任务。
-
考虑性能影响:频繁地抛出和捕获异常可能会对程序性能产生负面影响,尤其是在循环等高频率操作中。应当尽量减少不必要的异常抛出。
相关文章:
Python 中如何处理异常?
在Python中,异常处理是一种重要的编程技术,它允许开发者优雅地处理程序运行过程中出现的错误或异常情况,而不是让程序直接崩溃。 通过异常处理,我们可以使程序更加健壮、用户友好。 异常处理的基本结构 Python中最基本的异常处…...
C++——多态(下)
目录 引言 多态 4.多态的原理 4.1 虚函数表指针 4.2 多态的原理 5.单继承和多继承关系的虚函数表 5.1 单继承中的虚函数表 5.2 多继承中的虚函数表 结束语 引言 接下来我们继续学习多态。 没有阅读多态(上)的可以点击下面的链接哦~ C——多态…...
qsort函数详解+代码展示
文章目录 概要系列文章目录前言(1) 定义(2) 使用(举例子 上代码)1、定义数组:2、定义比较函数:3、调用 qsort:4、输出结果: (3) 注意事项 小结 概要 本篇博客将详细地介绍qsort排序函数,&#x…...
leetcode hot100【LeetCode 136. 只出现一次的数字】java实现
LeetCode 136. 只出现一次的数字 题目描述 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。 …...
(免费送源码)计算机毕业设计原创定制:Java+ssm+JSP+Ajax SSM棕榈校园论坛的开发
摘要 随着计算机科学技术的高速发展,计算机成了人们日常生活的必需品,从而也带动了一系列与此相关产业,是人们的生活发生了翻天覆地的变化,而网络化的出现也在改变着人们传统的生活方式,包括工作,学习,社交…...
对抗攻击算法:FGSM和PGD
FGSM 传送门 FGSM 利用了梯度上升的思想,通过损失函数相对于输入图像的梯度来找到 最容易 迷惑网络的方向,并沿着这个方向对图像进行微小的扰动。 FGSM 的基本想法是,沿着这个梯度的符号方向对图像进行微调,以最大化损失函数。具…...
【八股文】小米
文章目录 一、vector 和 list 的区别?二、include 双引号和尖括号的区别?三、set 的底层数据结构?四、set 和 multiset 的区别?五、map 和 unordered_map 的区别?六、虚函数和纯虚函数的区别?七、extern C …...
xtu oj 众数
样例输入# 3 1 0 1 2 1 1 2 3 1 1 2 2样例输出# 1 2 3 解题思路:与数组大小有关,先排序 举个例子思考一下 n4 k2 数组为1 2 3 4 如果我们想让众数那个位的值为3(即max3),3出现的次数为3,即众数为3,需要修改多少次…...
ENVI计算ROI分离度为灰色compute roi separability
我们在使用ENVI做影像分类的时候,需要采集样本兴趣区(ROI),在采集完兴趣区需要计算样本ROI的分离度。 但是有时会发下你 计算ROI分离度的选项为灰色状态不能计算。 如果不是以下问题: “一个是必须首先选择或创建至少…...
Adaboost集成学习 | Python实现基于NuSVR-Adaboost多输入单输出回归预测
目录 效果一览基本介绍程序设计参考资料效果一览 基本介绍 基于NuSVR-Adaboost多输入单输出回归预测python代码 NuSVR是一种支持向量回归(SVR)算法的变体,用于解决回归问题。SVR是一种监督学习方法,它用于预测连续目标变量,而不是分类标签。NuSVR在SVR的基础上引入了一个…...
Python学习第十三天--面向对象,类和对象
一、面向过程和面向对象区别 面向过程:需要实现一个功能时,着重的是开发的步骤和过程,每个步都需要自己亲力亲为,需要编写代码(自己来做) 面向对象:需要实现一个功能时,不注重的是…...
AI运用落地思考:如何用AI进行系统运维?
1. 故障预测与预防 数据收集与分析:通过收集系统的各种运行数据,如服务器性能指标(CPU使用率、内存占用、磁盘I/O等)、网络流量数据、应用程序日志等。利用AI算法对这些海量数据进行分析,挖掘数据中的模式和相关性。例…...
springboot学习-分页/排序/多表查询的例子
最近喜欢上了springboot,真是个好的脚手架。今天继续学习分页/排序/多表查询等复杂功能。按步骤记录如下. 按步骤做的发现不可用,最终还是用的jdbctemplate解决。这也是一次经验。总计在最后。 1.maven依赖 首先从https://start.spring.io/ 选择需要的…...
windows 应用 UI 自动化实战
UI 自动化技术架构选型 UI 自动化是软件测试过程中的重要一环,网络上也有很多 UI 自动化相关的知识或资料,具体到 windows 端的 UI 自动化,我们需要从以下几个方面考虑: 开发语言 毋庸置疑,在 UI 自动化测试领域&am…...
ffmpeg命令详解
原文网址:ffmpeg命令详解_IT利刃出鞘的博客-CSDN博客 简介 本文介绍ffmpeg命令的用法。 命令示例 1.mp4和avi的基本互转 ffmpeg -i D:\input.mp4 E:\output.avi ffmpeg -i D:\input.avi E:\output.mp4 -i 表示input,即输入。后面填一个输入地址和一…...
【漏洞复现】CVE-2022-43396
漏洞信息 NVD - CVE-2022-43396 In the fix for CVE-2022-24697, a blacklist is used to filter user input commands. But there is a risk of being bypassed. The user can control the command by controlling the kylin.engine.spark-cmd parameter of conf. 背景介绍…...
文件的摘要算法(md5、sm3、sha256、crc)
为了校验文件在传输中保证完整性和准确性,因此需要发送方先对源文件产生一个校验码,并将该值传输给接收方,将附件通过ftph或http方式传输后,由接收方使用相同的算法对接收文件再获取一个新的校验码,将该值和发送方传的…...
如何借助AI生成PPT,让创作轻松又高效
PPT是现代职场中不可或缺的表达工具,但同时也可能是令人抓狂的时间杀手。几页幻灯片的制作,常常需要花费数小时调整字体、配色与排版。AI的飞速发展为我们带来了革新——AI生成PPT的技术不仅让制作流程大大简化,还重新定义了效率与创意的关系…...
云技术-docker
声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团…...
对docker安装的mysql实现主从同步
1:分别安装mysql主,从数据库 将主库容器名称改为mysql_master,将从库容器名称改为mysql_slave 安装教程:docker安装mysql 2:配置主库的my.cnf挂载文件 [mysqld] #log-bin:表示启用binlog功能,并指定二进制日志的存储目录。 log-binmysql-bin #binlog_f…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
