当前位置: 首页 > news >正文

PyTorch:神经网络的基本骨架 nn.Module的使用

神经网络的基本骨架 nn.Module的使用

为了更全面地展示如何使用 nn.Module 构建一个适用于现代图像处理任务的卷积神经网络(CNN),我们将设计一个针对手写数字识别(如MNIST数据集)的简单CNN模型。CNN非常适合处理图像数据,因为它们能够有效地捕捉图像中的局部特征和空间关系。

nn.Module 的核心功能详细说明

  1. 参数封装和管理

    • nn.Module 自动追踪所有定义在模块中的 nn.Parameter 和嵌套的 nn.Module 实例,从而简化了参数的更新、优化和保存过程。
  2. 模块化网络构建

    • 允许开发者在单一模块内部组合多个子模块,便于构建复杂且层次化的网络架构,提高了代码的可读性和可维护性。
  3. 前向传播的定义

    • 开发者需要在派生自 nn.Module 的类中实现 forward 方法,这个方法详细定义了数据如何通过模型从输入到输出。
  4. 钩子函数的支持

    • 支持在模型的前向和反向传播过程中插入自定义操作,这对于调试、监控模型内部状态或进行特定的数据操作非常有用。
  5. 设备管理

    • 模型和其参数可以通过 .to 方法轻松迁移到不同的计算设备,例如从CPU迁移到GPU,这对于加速模型训练和推理非常重要。

使用 nn.Module 的步骤详解

  1. 定义模型类

    • 通过继承 nn.Module 并在构造函数 __init__ 中初始化所有必要的网络层和组件。
  2. 实现前向传播

    • forward 方法中定义输入数据如何经过定义的网络层处理并输出结果。
  3. 模型实例化

    • 创建模型的实例,准备用于训练或预测任务。
  4. 参数管理

    • 使用 .parameters().named_parameters() 方法遍历或访问模型的参数,这对于参数的优化至关重要。

示例:构建一个基础的 CNN 模型

此模型专为识别28x28像素的手写数字设计。

import torch
import torch.nn as nn
import torch.nn.functional as Fclass SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()# 定义第一个卷积层,接收1个通道的输入,输出32个通道self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)# 定义第二个卷积层,接收32个通道的输入,输出64个通道self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)# 定义最大池化层,使用2x2窗口self.pool = nn.MaxPool2d(kernel_size=2, stride=2)# 定义一个全连接层,将64个特征通道的7x7图像转换为256个输出特征self.fc1 = nn.Linear(64 * 7 * 7, 256)# 定义第二个全连接层,输出10个类别(0-9数字)self.fc2 = nn.Linear(256, 10)def forward(self, x):# 使用ReLU激活函数处理第一层卷积的输出x = F.relu(self.conv1(x))# 应用池化层x = self.pool(x)# 第二层卷积与ReLUx = F.relu(self.conv2(x))# 应用第二次池化x = self.pool(x)# 展平特征图,为全连接层准备x = x.view(-1, 64 * 7 * 7)# 全连接层与ReLU激活函数x = F.relu(self.fc1(x))# 输出层,不使用激活函数,直接输出x = self.fc2(x)return x# 实例化模型并测试其前向传播
model = SimpleCNN()
input_tensor = torch.randn(1, 1, 28, 28)  # 假设输入:1张1通道28x28的图像
output = model(input_tensor)
print(output)

模型详细解释

  1. 卷积层

    • conv1conv2 利用3x3的卷积核从输入图像中提取重要特征,第一个卷积层用于捕捉基本图形和边缘,第二个卷积层用于捕捉更复杂的特征。
  2. 池化层

    • MaxPool2d 操作用于降低特征维度,同时保留最重要的信息,有助于减少计算资源需求并提高模型泛化能力。
  3. 全连接层

    • fc1 将卷积后的高维数据压缩为更小的特征集合,fc2 将这些特征映射到10个数字类别。

这个示例清楚地展示了如何使用 nn.Module 构建一个卷积神经网络来处理图像分类任务。利用卷积层的能力捕捉局部特征,并通过全连接层进行最终的分类,nn.Module 提供了一种清晰、高效的方法来设计和实现复杂的网络架构,支持深度学习的快速发展和应用。

相关文章:

PyTorch:神经网络的基本骨架 nn.Module的使用

神经网络的基本骨架 nn.Module的使用 为了更全面地展示如何使用 nn.Module 构建一个适用于现代图像处理任务的卷积神经网络(CNN),我们将设计一个针对手写数字识别(如MNIST数据集)的简单CNN模型。CNN非常适合处理图像数…...

学习threejs,使用CubeCamera相机创建反光效果

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️CubeCamera 立方体相机 二、…...

Linux网络——IO模型和多路转接

通常所谓的IO,其本质就是等待通信和进行通信,即IO 等 拷贝。 那么想要做到高效的IO,就要在单位时间内,减少“等”的比重。 一.五种IO模型 阻塞 IO: 在内核将数据准备好之前, 系统调用会一直等待. 所有的套接字, 默认都是阻塞方…...

【计网】自定义序列化反序列化(二) —— 实现网络版计算器【上】

🌎 实现网络版计算器【上】 文章目录: 实现网络版计算器【上】 自定义协议       制定自定义协议 Jsoncpp序列化反序列化       Json::Value类       Jsoncpp序列化       Jsoncpp反序列化 自定义协议序列化反序列化      …...

数据结构2:顺序表

目录 1.线性表 2.顺序表 2.1概念及结构 2.2接口实现 1.线性表 线性表是n个具有相同特性的数据元素的有限序列。线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串 线性表在逻辑上是线性结构,也就说…...

python学习——元组

在 Python 中,元组(tuple)是一种内置的数据类型,用于存储不可变的有序元素集合。以下是关于 Python 元组的一些关键点: 文章目录 定义元组1. 使用圆括号 ()2. 使用 tuple() 函数3. 使用单个元素的元组4. 不使用圆括号…...

apache实现绑定多个虚拟主机访问服务

1个网卡绑定多个ip的命令 ip address add 192.168.45.140/24 dev ens33 ip address add 192.168.45.141/24 dev ens33 在linux服务器上,添加多个站点资料,递归创建三个文件目录 分别在三个文件夹下,建立测试页面 修改apache的配置文件http.…...

无需插件,如何以二维码网址直抵3D互动新世界?

随着Web技术的飞速发展,一个无需额外插件,仅凭二维码或网址即可直接访问的三维互动时代已经悄然来临。这一变革,得益于WebGL技术与先进web3D引擎的完美融合,它们共同构建了51建模网这样一个既便捷又高效的在线三维互动平台&#x…...

系统思考—感恩自己

生命中,真正值得我们铭记与感恩的,不是路途上的苦楚与风雨,而是那个在风雨中依然清醒、勇敢前行的自己,和那些一路同行、相互扶持的伙伴们。 感恩自己,感恩每一个与我们携手并进的人,也期待更多志同道合的…...

Java多线程详解①①(全程干货!!!) 实现简单的线程池 || 定时器 || 简单实现定时器 || 时间轮实现定时器

这里是Themberfue 上一节讲了 线程池 线程池中的拒绝策略 等相关内容 实现简单的线程池 一个线程池最核心的方法就是 submit,通过 submit 提交 Runnable 任务来通知线程池来执行 Runnable 任务 我们简单实现一个特定线程数量的线程池,这些线程应该在…...

DAMODEL丹摩|部署FLUX.1+ComfyUI实战教程

本文仅做测评体验,非广告。 文章目录 1. FLUX.1简介2. 实战2. 1 创建资源2. 1 ComfyUI的部署操作2. 3 部署FLUX.1 3. 测试5. 释放资源4. 结语 1. FLUX.1简介 FLUX.1是由黑森林实验室(Black Forest Labs)开发的开源AI图像生成模型。它拥有12…...

请求(request)

目录 前言 request概述 request的使用 获取前端传递的数据 实例 请求转发 特点 语法 实例 实例1 实例2 【关联实例1】 域对象 组成 作用范围: 生命周期: 使用场景: 使用步骤 存储数据对象 获得数据对象 移除域中的键值…...

关于VNC连接时自动断联的问题

在服务器端打开VNC Server的选项设置对话框,点左边的“Expert”(专家),然后找到“IdleTimeout”,将数值设置为0,点OK关闭对话框。搞定。 注意,服务端有两个vnc服务,这俩都要设置ide timeout为0才行 附件是v…...

C语言strtok()函数用法详解!

strtok 是 C 标准库中的字符串分割函数,用于将一个字符串拆分成多个部分(token),以某些字符(称为分隔符)为界限。 函数原型 char *strtok(char *str, const char *delim);参数: str&#xff1a…...

【docker 拉取镜像超时问题】

问题描述 在centosStream8上安装docker,使用命令sudo docker run hello-world 后出现以下错误: Error response from daemon: Get "https://registry-1.docker.io/v2/": net/http: request canceled while waiting for connection (Client.Ti…...

模拟手机办卡项目(移动大厅)--结合面向对象、JDBC、MYSQL、dao层模式,使用JAVA控制台实现

目录 1. 项目需求 2. 项目使用的技术 3.项目需求分析 3.1 实体类和接口 4.项目结构 5.业务实现 5.1 登录 5.1.1 实现步骤 5.1.2 原生代码问题 ​编辑 5.1.3 解决方法 1.说明: 2. ResultSetHandler结果集处理 5.1.4 代码 5.1.5 实现后的效果图 登录成功​…...

机器学习—大语言模型:推动AI新时代的引擎

云边有个稻草人-CSDN博客 目录 引言 一、大语言模型的基本原理 1. 什么是大语言模型? 2. Transformer 架构 3. 模型训练 二、大语言模型的应用场景 1. 文本生成 2. 问答系统 3. 编码助手 4. 多语言翻译 三、大语言模型的最新进展 1. GPT-4 2. 开源模型 …...

C++:探索哈希表秘密之哈希桶实现哈希

文章目录 前言一、链地址法概念二、哈希表扩容三、哈希桶插入逻辑四、析构函数五、删除逻辑六、查找七、链地址法代码实现总结 前言 前面我们用开放定址法代码实现了哈希表: C:揭秘哈希:提升查找效率的终极技巧_1 对于开放定址法来说&#…...

具身智能高校实训解决方案——从AI大模型+机器人到通用具身智能

一、 行业背景 在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。这些大模型具有海量的参数和强大的语言理解、知识表示能力,能够为机器人的行为决策提供更丰富的信息和更智能的指导。然而,单纯的大模型在面对复杂多变的现实…...

【消息序列】详解(8):探秘物联网中设备广播服务

目录 一、概述 1.1. 定义与特点 1.2. 工作原理 1.3. 应用场景 1.4. 技术优势 二、截断寻呼(Truncated Page)流程 2.1. 截断寻呼的流程 2.2. 示例代码 2.3. 注意事项 三、无连接外围广播过程 3.1. 设备 A 启动无连接外围设备广播 3.2. 示例代…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

HTML 列表、表格、表单

1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...