WordCloud参数的用法:
-------------词云图集合-------------
用Wordcloud+PyQt5写个词云图生成器1.0
WordCloud去掉停用词(fit_words+generate)的2种用法
通过词频来绘制词云图(jieba+WordCloud)
Python教程95:去掉停用词+词频统计+jieba.tokenize示例用法
将进酒—李白process_text词频统计,及词频可视化分析
使用wordcloud模块,绘制一个自定义的词云图形状
使用WordCloud模块中repeat参数,做一个关键字重复的词云图
关于词云图显示异常,出现乱码的解决办法
盘点WordCloud模块,词云图的相关知识点
Python源码05:使用Pyecharts画词云图图
1.WordCloud参数的用法:
1.1.基本参数
font_path:字符串类型,指定字体文件的路径。由于默认字体可能不支持中文,因此需要指定一个支持中文的字体文件路径来正确显示中文。
width:整数类型,默认值为400。指定生成词云图的宽度(像素)。
height:整数类型,默认值为200。指定生成词云图的高度(像素)。
background_color:颜色值类型,默认值为"black"。指定词云图的背景颜色。
1.2.词云形状和布局
mask:ndarray类型或None,默认值为None。如果指定了一个ndarray作为遮罩,则词云图的形状将被该遮罩取代。遮罩图像中白色(#FFFFFF)的部分将不会绘制词云,其余部分将用于绘制。
scale:浮点数类型,默认值为1。指定计算和绘图之间的比例,即放大画布的尺寸(比例尺)。对于大型词云图,使用比例尺可能比设置画布尺寸更快,但单词匹配可能不是很好。
prefer_horizontal:浮点数类型,默认值为0.9。指定词语水平方向排版出现的频率。由于水平排版和垂直排版概率之和为1,因此默认垂直方向排版频率为0.1。
1.3.字体和词频
min_font_size:整数类型,默认值为4。指定词云中显示的最小字体大小。
max_font_size:整数类型或None,默认值为None。指定词云中显示的最大字体大小。如果没有设置,则直接使用画布的大小作为参考。
font_step:整数类型,默认值为1。指定词云中字体大小的步进间隔。如果步长大于1,会加快运算速度但可能导致结果出现较大的误差。
max_words:数字类型,默认值为200。指定要显示的词的最大个数。
stopwords:字符串集合或None,默认值为None。指定需要屏蔽的词。如果为空,则使用内置的停用词列表。
1.4.颜色和配色
colormap:字符串或matplotlib colormap类型,默认值为"viridis"。指定给每个单词随机分配颜色的配色方案。如果指定了color_func参数,则忽略此参数。
color_func:可调用对象,默认值为None。指定生成新颜色的函数。如果为空,则使用默认的颜色生成函数。
1.5.其他参数
mode:字符串类型,默认值为"RGB"。当参数为"RGBA"并且background_color不为空时,背景为透明。
relative_scaling:浮点数类型,默认值为0.5。指定词频和字体大小的关联性。如果设置为1,则一个单词出现两次时,其字体大小为原来的两倍。
regexp:字符串或None(可选)。指定使用正则表达式分隔输入的文本。如果没有指定,则使用默认的正则表达式进行分词。
collocations:布尔类型,默认值为True。指定是否包括两个词的搭配(双宾语)。
1.6.常用函数方法
fit_words(frequencies):根据词频生成词云。
generate(text):根据文本生成词云。
generate_from_frequencies(frequencies[, …]):根据词频生成词云,类似于fit_words方法。
generate_from_text(text):根据文本生成词云,类似于generate方法。
recolor([random_state, color_func, colormap]):对现有输出重新着色。重新上色会比重新生成整个词云快很多。
完毕!!感谢您的收看
----------★★历史博文集合★★----------
我的零基础Python教程,Python入门篇 进阶篇 视频教程 Py安装py项目 Python模块 Python爬虫 Json Xpath 正则表达式 Selenium Etree CssGui程序开发 Tkinter Pyqt5 列表元组字典数据可视化 matplotlib 词云图 Pyecharts 海龟画图 Pandas Bug处理 电脑小知识office自动化办公 编程工具 NumPy Pygame
相关文章:
WordCloud参数的用法:
-------------词云图集合------------- 用WordcloudPyQt5写个词云图生成器1.0 WordCloud去掉停用词(fit_wordsgenerate)的2种用法 通过词频来绘制词云图(jiebaWordCloud) Python教程95:去掉停用词词频统计jieba.toke…...
qml调用c++类内函数的三种方法
一.方法一:使用 Q_INVOKABLE 宏声明成员函数 1.第一步:依然需要新建一个类NetworkHandler: #include <QObject> class NetworkHandler : public QObject { Q_OBJECT public: explicit NetworkHandler(QObject *parent nullptr); Q_INVOKAB…...

NLP任务四大范式的进阶历程:从传统TF-IDF到Prompt-Tuning(提示词微调)
引言:从TF-IDF到Prompt-Tuning(提示词微调),NLP的四次变革 自然语言处理(NLP)技术从最早的手工特征设计到如今的Prompt-Tuning,经历了四个重要阶段。随着技术的不断发展,我们的目标…...

GAMES101:现代计算机图形学入门-笔记-09
久违的101图形学回归咯 今天的话题应该是比较轻松的:聊一聊在渲染中比较先进的topics Advanced Light Transport 首先是介绍一系列比较先进的光线传播方法,有无偏的如BDPT(双向路径追踪),MLT(梅特罗波利斯…...

【Db First】.NET开源 ORM 框架 SqlSugar 系列
.NET开源 ORM 框架 SqlSugar 系列 【开篇】.NET开源 ORM 框架 SqlSugar 系列【入门必看】.NET开源 ORM 框架 SqlSugar 系列【实体配置】.NET开源 ORM 框架 SqlSugar 系列【Db First】.NET开源 ORM 框架 SqlSugar 系列【Code First】.NET开源 ORM 框架 SqlSugar 系列 …...

MySQL聚合查询分组查询联合查询
#对应代码练习 -- 创建考试成绩表 DROP TABLE IF EXISTS exam; CREATE TABLE exam ( id bigint, name VARCHAR(20), chinese DECIMAL(3,1), math DECIMAL(3,1), english DECIMAL(3,1) ); -- 插入测试数据 INSERT INTO exam (id,name, chinese, math, engli…...

告别照相馆!使用AI证件照工具HivisionIDPhotos打造在线证件照制作软件
文章目录 前言1. 安装Docker2. 本地部署HivisionIDPhotos3. 简单使用介绍4. 公网远程访问制作照片4.1 内网穿透工具安装4.2 创建远程连接公网地址 5. 配置固定公网地址 前言 本文主要介绍如何在Linux系统使用Docker快速部署一个AI证件照工具HivisionIDPhotos,并结合…...

通信原理第三次实验
实验目的与内容 实验操作与结果 5.1 刚开始先不加入白噪声,系统设计如下: 正弦波参数设置如下: FM设计如下: 延迟设计如下: 两个滤波器设计参数如下: 输出信号频谱为(未加入噪声)&a…...

【halcon】Metrology工具系列之 get_metrology_object_result_contour
get_metrology_object_result_contour (操作员) 名称 get_metrology_object_result_contour — 查询测量对象的结果轮廓。 签名 get_metrology_object_result_contour( : Contour : MetrologyHandle, Index, Instance, Resolution : ) 描述 get_metrology_object_result_…...

A052-基于SpringBoot的酒店管理系统
🙊作者简介:在校研究生,拥有计算机专业的研究生开发团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹 赠送计算机毕业设计600…...

NLP信息抽取大总结:三大任务(带Prompt模板)
信息抽取大总结 1.NLP的信息抽取的本质?2.信息抽取三大任务?3.开放域VS限定域4.信息抽取三大范式?范式一:基于自定义规则抽取(2018年前)范式二:基于Bert下游任务建模抽取(2018年后&a…...

python常见问题-pycharm无法导入三方库
1.运行环境 python版本:Python 3.9.6 需导入的greenlet版本:greenlet 3.1.1 2.当前的问题 由于需要使用到greenlet三方库,所以进行了导入,以下是我个人导入时的全过程 ①首先尝试了第1种导入方式:使用pycharm进行…...

迅为RK3588开发板Android系统开发笔记-使用ADB工具
1 使用 ADB 工具 ADB 英文名叫 Android debug bridge ,是 Android SDK 里面的一个工具,用这个工具可以操作管理 Android 模拟器或者真实的 Android 设备,主要的功能如下所示: 在 Android 设备上运行 shell 终端,用命…...
什么是分布式数据库?
随着现代互联网应用和大数据时代的到来,分布式数据库成为了解决大规模数据存储和高并发处理的核心技术之一。本文将通过深入浅出的方式,带你全面理解分布式数据库的概念、工作原理以及底层实现技术。无论你是刚刚接触分布式数据库的开发者,还…...
Leetcode 3363. Find the Maximum Number of Fruits Collected
Leetcode 3363. Find the Maximum Number of Fruits Collected 1. 解题思路2. 代码实现 题目链接:3363. Find the Maximum Number of Fruits Collected 1. 解题思路 这一题是一道陷阱题…… 乍一眼看过去,由于三人的路线完全可能重叠,因此…...
【数据仓库 | Data Warehouse】数据仓库的四大特性
1. 前言 数据仓库是用于支持管理和决策的数据集合,它汇集了来自不同数据源的历史数据,以便进行多维度的分析和报告。数据仓库的四大特点是:主题性,集成性,稳定性,时变性。 2. 主题性(Subject-Oriented) …...
springboot配置多数据源mysql+TDengine保姆级教程
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、pom文件二、yamlDataSourceConfigServiceMapper.xml测试总结 前言 Mybatis-plus管理多数据源,数据库为mysql和TDengine。 一、pom文件 <de…...

dns实验2:反向解析
启动服务: 给虚拟机网卡添加IP地址: 查看有几个IP地址: 打开配置文件: 重启服务,该宽松模式,关闭防火墙: 本机测试: windows测试:(本地shell)...

ZooKeeper 基础知识总结
先赞后看,Java进阶一大半 ZooKeeper 官网这样介绍道:ZooKeeper 是一种集中式服务,用于维护配置信息、命名、提供分布式同步和提供组服务。 各位hao,我是南哥,相信对你通关面试、拿下Offer有所帮助。 ⭐⭐⭐一份南哥编写…...
npm库xss依赖的使用方法和vue3 中Web富文本编辑器 wangeditor 使用xss库解决 XSS 攻击的方法
npm库xss依赖的使用方法和vue3 中Web富文本编辑器 wangeditor 使用xss库解决 XSS 攻击的方法 1. npm库xss依赖的使用方法1.1 xss库定义1.2 xss库功能 2. vue3 中 wangeditor 使用xss库解决 XSS 攻击的方法和示例2.1 在终端执行如下命令安装 xss 依赖2.2 在使用 wangeditor 的地…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...