残差神经网络
目录
1. 梯度消失问题
2. 残差学习的引入
3. 跳跃连接(Shortcut Connections)
4. 恒等映射与维度匹配
5. 反向传播与梯度流
6. 网络深度与性能
总结
残差神经网络的原理是基于“残差学习”的概念,它旨在解决深度神经网络训练中的梯度消失或梯度爆炸问题,并允许网络随着层数的增加而持续深化。以下是残差神经网络原理的详细解释:
1. 梯度消失问题
在传统的深层神经网络中,随着层数的增加,梯度在反向传播过程中可能会变得越来越小(梯度消失),或者变得越来越大(梯度爆炸),这导致网络难以训练。梯度消失问题尤其常见,因为它意味着网络中的早期层几乎学不到任何东西。
2. 残差学习的引入
残差神经网络通过引入“残差”的概念来解决这个问题。残差是指目标函数与预测函数之间的差异,即实际输出与期望输出之间的差值。在残差网络中,不是直接学习输入到输出的映射,而是学习输入到残差的映射。
3. 跳跃连接(Shortcut Connections)
残差网络的关键创新是跳跃连接(或称为shortcut connections),它允许网络中的信息直接跳过某些层。这些跳跃连接通常连接一个残差块的输入和输出,形式上可以表示为:

其中:
- ��yl 是第 �l 个残差块的输出。
- ��xl 是第 �l 个残差块的输入。
- ℎ(��)h(xl) 是跳跃连接,它是一个恒等映射(identity mapping),即直接将输入 ��xl 传递到输出。
- �(��,{��})F(xl,{Wl}) 是残差块中的权重层对输入 ��xl 的处理结果,{��}{Wl} 是权重。
4. 恒等映射与维度匹配
如果输入和输出的维度相同,跳跃连接就是一个简单的恒等映射。如果维度不同(例如,在卷积层之后维度改变了),那么跳跃连接会通过一个线性变换(通常是1x1的卷积层)来匹配维度。
5. 反向传播与梯度流
在反向传播过程中,跳跃连接确保了梯度可以直接从输出层传回到较早的层。即使某些层中的梯度很小,通过跳跃连接的梯度仍然可以保持较大的值,从而避免了梯度消失问题。
6. 网络深度与性能
由于残差网络能够有效地训练更深层的网络,因此它们可以捕获更复杂的特征,并在各种任务中取得更好的性能。实验表明,增加网络的深度可以提高残差网络的准确率,这与传统的深层网络不同,后者在达到一定深度后性能会饱和甚至退化。
总结
残差神经网络的原理是通过引入跳跃连接,使得网络可以学习输入到残差的映射,而不是直接学习输入到输出的映射。这种设计允许梯度在网络中顺畅流动,从而解决了深层网络训练中的梯度消失问题,并使得网络的深度可以大大增加,提高了网络的性能。
相关文章:
残差神经网络
目录 1. 梯度消失问题 2. 残差学习的引入 3. 跳跃连接(Shortcut Connections) 4. 恒等映射与维度匹配 5. 反向传播与梯度流 6. 网络深度与性能 总结 残差神经网络的原理是基于“残差学习”的概念,它旨在解决深度神经网络训练中的梯度消…...
mini-spring源码分析
IOC模块 关键解释 beanFactory:beanFactory是一个hashMap, key为beanName, Value为 beanDefination beanDefination: BeanDefinitionRegistry,BeanDefinition注册表接口,定义注册BeanDefinition的方法 beanReference:增加Bean…...
黑马程序员Java项目实战《苍穹外卖》Day01
苍穹外卖-day01 课程内容 软件开发整体介绍苍穹外卖项目介绍开发环境搭建导入接口文档Swagger 项目整体效果展示: 管理端-外卖商家使用 用户端-点餐用户使用 当我们完成该项目的学习,可以培养以下能力: 1. 软件开发整体介绍 作为一…...
uniapp开发支付宝小程序自定义tabbar样式异常
解决方案: 这个问题应该是支付宝基础库的问题,除了依赖于官方更新之外,开发者可以利用《自定义 tabBar》曲线救国 也就是创建一个空内容的自定义tabBar,这样即使 tabBar 被渲染出来,但从视觉上也不会有问题 1.官方文…...
python+django5.1+docker实现CICD自动化部署springboot 项目前后端分离vue-element
一、开发环境搭建和配置 # channels是一个用于在Django中实现WebSocket、HTTP/2和其他异步协议的库。 pip install channels#channels-redis是一个用于在Django Channels中使用Redis作为后台存储的库。它可以用于处理#WebSocket连接的持久化和消息传递。 pip install channels…...
python代码示例(读取excel文件,自动播放音频)
目录 python 操作excel 表结构 安装第三方库 代码 自动播放音频 介绍 安装第三方库 代码 python 操作excel 表结构 求出100班同学的平均分 安装第三方库 因为这里的表结构是.xlsx文件,需要使用openpyxl库 如果是.xls格式文件,需要使用xlrd库 pip install openpyxl /…...
【第十课】Rust并发编程(一)
目录 前言 Fork和Join 前言 本节会介绍Rust中的并发编程,并发编程在编程中是提升cpu使用率的一大利器,通过多线程技术提升效率,Rust的并发和其他编程语言的并发不同的地方在于,Rust号称无畏并发。更重要的一点是安全。Rust中所有…...
图形渲染性能优化
variable rate shading conditional render 设置可见性等, 不需要重新build command buffer indirect draw glMultiDraw* - 直接支持多次绘制glMultiDrawIndirect - 间接多次绘制multithreading 多线程录制 实例化渲染 lod texture array 小对象剔除 投影到…...
elasticsearch的索引模版使用方法
5 索引模版⭐️⭐️⭐️⭐️⭐️ 索引模板就是创建索引时要遵循的模板规则索引模板仅对新创建的索引有效,已经创建的索引并不受索引模板的影响 5.1 索引模版的基本使用 1.查看所有的索引模板 GET 10.0.0.91:9200/_index_template2.创建自定义索引模板 xixi &…...
论文学习——进化动态约束多目标优化:测试集和算法
论文题目:Evolutionary Dynamic Constrained Multiobjective Optimization: Test Suite and Algorithm 进化动态约束多目标优化:测试集和算法(Guoyu Chen ,YinanGuo , Member, IEEE, Yong Wang , Senior Member, IEEE, Jing Liang , Senior …...
C++中的volatile关键字
作用: 1.它用于修饰变量,告知编译器该变量的值可能会在程序的外部被改变,编译器不能对这个变量的访问进行优化。这是因为编译器通常会对代码进行优化,例如把变量的值缓存到寄存器中,但对于 volatile 变量,…...
linux桌面qt应用程序UI自动化实现之dogtail
1. 前言 Dogtail适用于Linux 系统上进行 GUI 自动化测试,利用 Accessibility 技术与桌面程序通信;Dogtail 包含一个名为 sniff 的组件,这是一个嗅探器,用于 GUI 程序追踪; 源码下载:dogtail PyPI 可通过sudo python setup.py install安装或sudo pip install dogt…...
Hello World C#
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System; 引入了System命名空间,基本输入输出。一般只用这个,后面的不用 using System.Collections.Generic; 包含了定…...
SAP开发语言ABAP开发入门
1. 了解ABAP开发环境和基础知识 - ABAP简介 - ABAP(Advanced Business Application Programming)是SAP系统中的编程语言,主要用于开发企业级的业务应用程序,如财务、物流、人力资源等模块的定制开发。 - 开发环境搭建 - 首先需…...
应急响应靶机——easy溯源
载入虚拟机,开启虚拟机: (账户密码:zgsfsys/zgsfsys) 解题程序.exe是额外下载解压得到的: 1. 攻击者内网跳板机IP地址 2. 攻击者服务器地址 3. 存在漏洞的服务(提示:7个字符) 4. 攻击者留下的flag(格式…...
【前端】vscode报错: 无法加载文件 D:\nodejs\node_global\yarn.ps1,因为在此系统上禁止运行脚本。
vscode运行前端代码时候,执行yarn install时候报错 问题: 无法加载文件 D:\nodejs\node_global\yarn.ps1,因为在此系统上禁止运行脚本。 解决方式: 首先用管理员身份运行vscode 查看 get-ExecutionPolicy,Restrict…...
Spring Web MVC(详解中)
文章目录 Spring MVC(中)RESTFul风格设计RESTFul风格概述RESTFul风格特点RESTFul风格设计规范RESTFul风格好处RESTFul风格实战需求分析RESTFul风格接口设计后台接口实现 基于RESTFul风格练习(前后端分离模式)案例功能和接口分析功…...
Flutter:encrypt插件 AES加密处理
1、pubspec.yaml导入插件 cupertino_icons: ^1.0.8 # 密码加密 encrypt: 5.0.3encrypt封装 import package:encrypt/encrypt.dart; /// 加密类 class EncryptUtil {static final EncryptUtil _instance EncryptUtil._internal();factory EncryptUtil() > _instance;Encrypt…...
Python bytes类型及用法
在Python中,bytes类型是一种不可变的字节序列,用于存储原始的二进制数据。bytes对象通常用于处理文件、网络通信和其他需要处理原始字节数据的场景。 以下是bytes类型的一些基本用法和特性: 1. 创建bytes对象 可以通过多种方式创建bytes对…...
阅读《基于蒙特卡洛法的破片打击无人机易损性分析》_笔记
目录 基本信息 1 引言 1.1 主要研究内容 1.2 研究必要性(为什么要研究) 1.3 该领域研究现状(别人做了什么/怎么做的) 2 主要研究过程(我们做了什么) 2.1 建立目标仿真模型 2.2 确定毁伤依据 2.3 无…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
