当前位置: 首页 > news >正文

llamaindex实战-ChatEngine-ReAct Agent模式

概述

ReAct 是一种基于Agent的聊天模式,构建在数据查询引擎之上。对于每次聊天交互,代理都会进入一个 ReAct 循环:

  • 首先决定是否使用查询引擎工具并提出适当的输入

  • (可选)使用查询引擎工具并观察其输出

  • 决定是否重复或给出最终答复

这种方法很灵活,因为它可以灵活地选择是否查询知识库,它是基于Agent来实现的。然而,表现也更依赖于LLM的质量。您可能需要进行更多强制,以确保它选择在正确的时间查询知识库,而不是产生幻觉答案。

实现逻辑

  1. 构建和使用本地大模型。这里使用的是gemma2这个模型,也可以配置其他的大模型。

  2. 从文档中构建索引

  3. 把索引转换成查询引擎:index.as_chat_engine,并设置chat_mode为react。

注意:我这里使用的是本地大模型gemm2,效果可能没有openai的好。

实现代码

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.ollama import Ollamalocal_model = "/opt/models/BAAI/bge-base-en-v1.5"# bge-base embedding model
Settings.embed_model = HuggingFaceEmbedding(model_name=local_model)
# ollama
Settings.llm = Ollama(model="gemma2", request_timeout=360.0)from llama_index.core import VectorStoreIndex, SimpleDirectoryReaderdata = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(data)# 设置使用react模式
chat_engine = index.as_chat_engine(chat_mode="react", llm=Settings.llm, verbose=True)response = chat_engine.chat( "Use the tool to answer what did Paul Graham do in the summer of 1995?")

输出

从以下输出可以看到,不同大模型的输出不太相同。Agent通过查询引擎获取到了对应的索引和文本信息。

$ python chat_react.py 
> Running step 3e748b23-a1bb-4807-89f6-7bda3b418b86. Step input: Use the tool to answer what did Paul Graham do in the summer of 1995?
Thought: The current language of the user is: English. I need to use a tool to help me answer the question.
Action: query_engine_tool
Action Input: {'input': 'What did Paul Graham do in the summer of 1995?'}
Observation: He worked on his Lisp-based web server.  
​
> Running step 5f4592b6-f1d0-4fcf-8b03-a50d46641ef2. Step input: None
Thought: I can answer without using any more tools. I'll use the user's language to answer
Answer: In the summer of 1995, Paul Graham worked on his Lisp-based web server.

实现分析

从以下实现代码中可以看到,当聊天模式是REACT模式时,会创建一个AgentRunner,并把查询引擎作为工具放入Agent工具列表中。

  def as_chat_engine(self,chat_mode: ChatMode = ChatMode.BEST,llm: Optional[LLMType] = None,**kwargs: Any,) -> BaseChatEngine:    if chat_mode in [ChatMode.REACT, ChatMode.OPENAI, ChatMode.BEST]:# use an agent with query engine tool in these chat modes# NOTE: lazy importfrom llama_index.core.agent import AgentRunnerfrom llama_index.core.tools.query_engine import QueryEngineTool
​# convert query engine to toolquery_engine_tool = QueryEngineTool.from_defaults(query_engine=query_engine)
​return AgentRunner.from_llm(tools=[query_engine_tool],llm=llm,**kwargs,)

小结

通过REACT模式,会创建一个Agent,并把查询引擎作为工具放到该Agent中。然后,通过查询引擎的能力来查询想要的内容。

相关文章:

llamaindex实战-ChatEngine-ReAct Agent模式

概述 ReAct 是一种基于Agent的聊天模式,构建在数据查询引擎之上。对于每次聊天交互,代理都会进入一个 ReAct 循环: 首先决定是否使用查询引擎工具并提出适当的输入 (可选)使用查询引擎工具并观察其输出 决定是否重复…...

redis快速进门

、数据库类型认识 关系型数据库 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。 SQL 语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行…...

从0开始linux(39)——线程(2)线程控制

欢迎来到博主的专栏:从0开始linux 博主ID:代码小豪 文章目录 线程创建线程标识符线程参数多线程竞争资源 回收线程detach 线程退出pthread_cancel 线程创建 线程创建的函数为pthread_create。该函数是包含在posix线程库当中,posix线程是C语言…...

International Journal of Medical Informatics投稿经历时间节点

20240423,完成投稿 20240612,按编辑要求修改后再投, with editor 20240613,under review,completed 0, accepted 0, invitation 2. 20240620, under review,completed 0, accepted 1, invitation 2. 20240626, unde…...

BUUCTF—Reverse—Java逆向解密(10)

程序员小张不小心弄丢了加密文件用的秘钥,已知还好小张曾经编写了一个秘钥验证算法,聪明的你能帮小张找到秘钥吗? 注意:得到的 flag 请包上 flag{} 提交 需要用专门的Java反编译软件:jd-gui 下载文件,发现是个class文…...

CLIP-MMA: Multi-Modal Adapter for Vision-Language Models

当前的问题 CLIP-Adapter仅单独调整图像和文本嵌入,忽略了不同模态之间的交互作用。此外,适应性参数容易过拟合训练数据,导致新任务泛化能力的损失。 动机 图1所示。多模态适配器说明。 通过一种基于注意力的 Adapter ,作者称之…...

三维扫描仪-3d扫描建模设备自动检测尺寸

在现代工业制造领域,三维扫描仪已成为实现高精度尺寸检测的关键设备。CASAIM自动化智能检测系统以其自动化三维立体扫描技术,为产品尺寸的自动检测提供了高效、可靠的解决方案。 CASAIM自动化智能检测系统通过非接触式测量方式,通过激光扫描…...

vue3+ant design vue实现日期选择器默认显示当前年,并限制用户只能选择当前年及之前~

1、思路:之前想拿当前年直接做赋值操作,实际上是行不通的,因为组件本身有数据格式限制,会出现报错,然后索性直接获取当前日期(YYYY-MM-DD)赋值给日期组件,这样不管你用的是年&#x…...

【electron-vite】搭建electron+vue3框架基础

一、拉取项目 electron-vite 中文文档地址: https://cn-evite.netlify.app/guide/ 官网网址:https://evite.netlify.app/ 版本 vue版本:vue3 构建工具:vite 框架类型:Electron JS语法:TypeScript &…...

05《存储器层次结构与接口》计算机组成与体系结构 系列课

目录 存储器层次结构概述 层次结构的定义 存储器的排名 存储器接口 处理器与存储器的速度匹配 存储器接口的定义 存储器访问命中率 两种接口 第1种方式:并行 命中率的计算 存储器访问时间 第2种方式:逐级 结语 大家好,欢迎回来。…...

elasticsearch报错fully-formed single-node cluster with cluster UUID

1.问题描述 k8s集群内部署的es中间件起不来,查看日志发现如下警告,节点发现功能开启,但是目前我是单节点服务,所以尝试编辑sts将节点发现功能去掉或者在部署时将你的sts的yaml文件和chart文件修改重新部署以去掉该功能 {"t…...

Milvus×Florence:一文读懂如何构建多任务视觉模型

近两年来多任务学习(Multi-task learning)正取代传统的单任务学习(single-task learning),逐渐成为人工智能领域的主流研究方向。其原因在于,多任务学习可以让我们以最少的人力投入,获得尽可能多…...

DAPP

02-DAPP 1 啥是 DApp? DApp,部署在链上的去中心化的应用。 DApp 是开放源代码,能运行在分布式网络上,通过网络中不同对等节点相互通信进行去中心化操作的应用。 DAPP 开放源代码,才能获得人的信任。如比特币&#xff…...

生产环境中,nginx 最多可以代理多少台服务器,这个应该考虑哪些参数 ?怎么计算呢

生产环境中,nginx 最多可以代理多少台服务器,这个应该考虑哪些参数 ?怎么计算呢 关键参数计算方法评估步骤总结 在生产环境中,Nginx最多可以代理的服务器数量并没有一个固定的限制,它取决于多个因素,包括Ng…...

【深度学习|目标跟踪】StrongSORT 详解(以及StrongSORT++)

StrongSort详解 1、论文及源码2、DeepSORT回顾3、StrongSORT的EMA4、StrongSORT的NSA Kalman5、StrongSORT的MC6、StrongSORT的BOT特征提取器7、StrongSORT的AFLink8、StrongSORT的GSI模块 1、论文及源码 论文地址:https://arxiv.org/pdf/2202.13514 源码地址&#…...

23种设计模式-原型(Prototype)设计模式

文章目录 一.什么是原型设计模式?二.原型模式的特点三.原型模式的结构四.原型模式的优缺点五.原型模式的 C 实现六.原型模式的 Java 实现七. 代码解析八.总结 类图: 原型设计模式类图 一.什么是原型设计模式? 原型模式(Prototype…...

Qt—QLineEdit 使用总结

文章参考:Qt—QLineEdit 使用总结 一、简述 QLineEdit是一个单行文本编辑控件。 使用者可以通过很多函数,输入和编辑单行文本,比如撤销、恢复、剪切、粘贴以及拖放等。 通过改变 QLineEdit 的 echoMode() ,可以设置其属性,比如以密码的形式输入。 文本的长度可以由 m…...

go-zero使用自定义模板实现统一格式的 body 响应

前提 go环境的配置、goctl的安装、go-zero的基本使用默认都会 需求 go-zero框架中,默认使用goctl命令生成的代码并没有统一响应格式,现在使用自定义模板实现统一响应格式: {"code": 0,"msg": "OK","d…...

BUGKU printf

整体思路 实现循环-->获取libc版本和system函数地址->将strcpy的got表项修改为system并获得shell 第一步:实现循环 从汇编语句可以看出,在每次循环结束时若0x201700处的值是否大于1则会继续循环。 encode1会将编码后的结果保存至0x2015c0处&am…...

深度学习:梯度下降法

损失函数 L:衡量单一训练样例的效果。 成本函数 J:用于衡量 w 和 b 的效果。 如何使用梯度下降法来训练或学习训练集上的参数w和b ? 成本函数J是参数w和b的函数,它被定义为平均值; 损失函数L可以衡量你的算法效果&a…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...