llamaindex实战-ChatEngine-ReAct Agent模式
概述
ReAct 是一种基于Agent的聊天模式,构建在数据查询引擎之上。对于每次聊天交互,代理都会进入一个 ReAct 循环:
-
首先决定是否使用查询引擎工具并提出适当的输入
-
(可选)使用查询引擎工具并观察其输出
-
决定是否重复或给出最终答复
这种方法很灵活,因为它可以灵活地选择是否查询知识库,它是基于Agent来实现的。然而,表现也更依赖于LLM的质量。您可能需要进行更多强制,以确保它选择在正确的时间查询知识库,而不是产生幻觉答案。
实现逻辑
-
构建和使用本地大模型。这里使用的是gemma2这个模型,也可以配置其他的大模型。
-
从文档中构建索引
-
把索引转换成查询引擎:
index.as_chat_engine,并设置chat_mode为react。
注意:我这里使用的是本地大模型gemm2,效果可能没有openai的好。
实现代码
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.ollama import Ollamalocal_model = "/opt/models/BAAI/bge-base-en-v1.5"# bge-base embedding model
Settings.embed_model = HuggingFaceEmbedding(model_name=local_model)
# ollama
Settings.llm = Ollama(model="gemma2", request_timeout=360.0)from llama_index.core import VectorStoreIndex, SimpleDirectoryReaderdata = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(data)# 设置使用react模式
chat_engine = index.as_chat_engine(chat_mode="react", llm=Settings.llm, verbose=True)response = chat_engine.chat( "Use the tool to answer what did Paul Graham do in the summer of 1995?")
输出
从以下输出可以看到,不同大模型的输出不太相同。Agent通过查询引擎获取到了对应的索引和文本信息。
$ python chat_react.py
> Running step 3e748b23-a1bb-4807-89f6-7bda3b418b86. Step input: Use the tool to answer what did Paul Graham do in the summer of 1995?
Thought: The current language of the user is: English. I need to use a tool to help me answer the question.
Action: query_engine_tool
Action Input: {'input': 'What did Paul Graham do in the summer of 1995?'}
Observation: He worked on his Lisp-based web server.
> Running step 5f4592b6-f1d0-4fcf-8b03-a50d46641ef2. Step input: None
Thought: I can answer without using any more tools. I'll use the user's language to answer
Answer: In the summer of 1995, Paul Graham worked on his Lisp-based web server.
实现分析
从以下实现代码中可以看到,当聊天模式是REACT模式时,会创建一个AgentRunner,并把查询引擎作为工具放入Agent工具列表中。
def as_chat_engine(self,chat_mode: ChatMode = ChatMode.BEST,llm: Optional[LLMType] = None,**kwargs: Any,) -> BaseChatEngine: if chat_mode in [ChatMode.REACT, ChatMode.OPENAI, ChatMode.BEST]:# use an agent with query engine tool in these chat modes# NOTE: lazy importfrom llama_index.core.agent import AgentRunnerfrom llama_index.core.tools.query_engine import QueryEngineTool
# convert query engine to toolquery_engine_tool = QueryEngineTool.from_defaults(query_engine=query_engine)
return AgentRunner.from_llm(tools=[query_engine_tool],llm=llm,**kwargs,)
小结
通过REACT模式,会创建一个Agent,并把查询引擎作为工具放到该Agent中。然后,通过查询引擎的能力来查询想要的内容。
相关文章:
llamaindex实战-ChatEngine-ReAct Agent模式
概述 ReAct 是一种基于Agent的聊天模式,构建在数据查询引擎之上。对于每次聊天交互,代理都会进入一个 ReAct 循环: 首先决定是否使用查询引擎工具并提出适当的输入 (可选)使用查询引擎工具并观察其输出 决定是否重复…...
redis快速进门
、数据库类型认识 关系型数据库 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。 SQL 语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行…...
从0开始linux(39)——线程(2)线程控制
欢迎来到博主的专栏:从0开始linux 博主ID:代码小豪 文章目录 线程创建线程标识符线程参数多线程竞争资源 回收线程detach 线程退出pthread_cancel 线程创建 线程创建的函数为pthread_create。该函数是包含在posix线程库当中,posix线程是C语言…...
International Journal of Medical Informatics投稿经历时间节点
20240423,完成投稿 20240612,按编辑要求修改后再投, with editor 20240613,under review,completed 0, accepted 0, invitation 2. 20240620, under review,completed 0, accepted 1, invitation 2. 20240626, unde…...
BUUCTF—Reverse—Java逆向解密(10)
程序员小张不小心弄丢了加密文件用的秘钥,已知还好小张曾经编写了一个秘钥验证算法,聪明的你能帮小张找到秘钥吗? 注意:得到的 flag 请包上 flag{} 提交 需要用专门的Java反编译软件:jd-gui 下载文件,发现是个class文…...
CLIP-MMA: Multi-Modal Adapter for Vision-Language Models
当前的问题 CLIP-Adapter仅单独调整图像和文本嵌入,忽略了不同模态之间的交互作用。此外,适应性参数容易过拟合训练数据,导致新任务泛化能力的损失。 动机 图1所示。多模态适配器说明。 通过一种基于注意力的 Adapter ,作者称之…...
三维扫描仪-3d扫描建模设备自动检测尺寸
在现代工业制造领域,三维扫描仪已成为实现高精度尺寸检测的关键设备。CASAIM自动化智能检测系统以其自动化三维立体扫描技术,为产品尺寸的自动检测提供了高效、可靠的解决方案。 CASAIM自动化智能检测系统通过非接触式测量方式,通过激光扫描…...
vue3+ant design vue实现日期选择器默认显示当前年,并限制用户只能选择当前年及之前~
1、思路:之前想拿当前年直接做赋值操作,实际上是行不通的,因为组件本身有数据格式限制,会出现报错,然后索性直接获取当前日期(YYYY-MM-DD)赋值给日期组件,这样不管你用的是年&#x…...
【electron-vite】搭建electron+vue3框架基础
一、拉取项目 electron-vite 中文文档地址: https://cn-evite.netlify.app/guide/ 官网网址:https://evite.netlify.app/ 版本 vue版本:vue3 构建工具:vite 框架类型:Electron JS语法:TypeScript &…...
05《存储器层次结构与接口》计算机组成与体系结构 系列课
目录 存储器层次结构概述 层次结构的定义 存储器的排名 存储器接口 处理器与存储器的速度匹配 存储器接口的定义 存储器访问命中率 两种接口 第1种方式:并行 命中率的计算 存储器访问时间 第2种方式:逐级 结语 大家好,欢迎回来。…...
elasticsearch报错fully-formed single-node cluster with cluster UUID
1.问题描述 k8s集群内部署的es中间件起不来,查看日志发现如下警告,节点发现功能开启,但是目前我是单节点服务,所以尝试编辑sts将节点发现功能去掉或者在部署时将你的sts的yaml文件和chart文件修改重新部署以去掉该功能 {"t…...
Milvus×Florence:一文读懂如何构建多任务视觉模型
近两年来多任务学习(Multi-task learning)正取代传统的单任务学习(single-task learning),逐渐成为人工智能领域的主流研究方向。其原因在于,多任务学习可以让我们以最少的人力投入,获得尽可能多…...
DAPP
02-DAPP 1 啥是 DApp? DApp,部署在链上的去中心化的应用。 DApp 是开放源代码,能运行在分布式网络上,通过网络中不同对等节点相互通信进行去中心化操作的应用。 DAPP 开放源代码,才能获得人的信任。如比特币ÿ…...
生产环境中,nginx 最多可以代理多少台服务器,这个应该考虑哪些参数 ?怎么计算呢
生产环境中,nginx 最多可以代理多少台服务器,这个应该考虑哪些参数 ?怎么计算呢 关键参数计算方法评估步骤总结 在生产环境中,Nginx最多可以代理的服务器数量并没有一个固定的限制,它取决于多个因素,包括Ng…...
【深度学习|目标跟踪】StrongSORT 详解(以及StrongSORT++)
StrongSort详解 1、论文及源码2、DeepSORT回顾3、StrongSORT的EMA4、StrongSORT的NSA Kalman5、StrongSORT的MC6、StrongSORT的BOT特征提取器7、StrongSORT的AFLink8、StrongSORT的GSI模块 1、论文及源码 论文地址:https://arxiv.org/pdf/2202.13514 源码地址&#…...
23种设计模式-原型(Prototype)设计模式
文章目录 一.什么是原型设计模式?二.原型模式的特点三.原型模式的结构四.原型模式的优缺点五.原型模式的 C 实现六.原型模式的 Java 实现七. 代码解析八.总结 类图: 原型设计模式类图 一.什么是原型设计模式? 原型模式(Prototype…...
Qt—QLineEdit 使用总结
文章参考:Qt—QLineEdit 使用总结 一、简述 QLineEdit是一个单行文本编辑控件。 使用者可以通过很多函数,输入和编辑单行文本,比如撤销、恢复、剪切、粘贴以及拖放等。 通过改变 QLineEdit 的 echoMode() ,可以设置其属性,比如以密码的形式输入。 文本的长度可以由 m…...
go-zero使用自定义模板实现统一格式的 body 响应
前提 go环境的配置、goctl的安装、go-zero的基本使用默认都会 需求 go-zero框架中,默认使用goctl命令生成的代码并没有统一响应格式,现在使用自定义模板实现统一响应格式: {"code": 0,"msg": "OK","d…...
BUGKU printf
整体思路 实现循环-->获取libc版本和system函数地址->将strcpy的got表项修改为system并获得shell 第一步:实现循环 从汇编语句可以看出,在每次循环结束时若0x201700处的值是否大于1则会继续循环。 encode1会将编码后的结果保存至0x2015c0处&am…...
深度学习:梯度下降法
损失函数 L:衡量单一训练样例的效果。 成本函数 J:用于衡量 w 和 b 的效果。 如何使用梯度下降法来训练或学习训练集上的参数w和b ? 成本函数J是参数w和b的函数,它被定义为平均值; 损失函数L可以衡量你的算法效果&a…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
