当前位置: 首页 > news >正文

复杂网络(四)

一、规则网络

  1. 孤立节点网络
  2. 全局耦合网络(又称完全网络)
  3. 星型网络
  4. 一维环
  5. 二维晶格

编程实践:

import networkx as nx
import matplotlib.pyplot as pltn = 10
#创建孤立节点图
G1 = nx.Graph()
G1.add_nodes_from(list(range(n)))
plt.figure(figsize = (4,4))
nx.draw(G1, pos = nx.circular_layout(G1),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建完全图
G2 = nx.complete_graph(n)
plt.figure(figsize = (4,4))
nx.draw(G2, pos = nx.circular_layout(G2),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建一维环状图
G3 = nx.cycle_graph(n)
plt.figure(figsize = (4,4))
nx.draw(G3,pos = nx.circular_layout(G3),node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建K近邻(耦合)图
G4 = nx.watts_strogatz_graph(n,4,0)
plt.figure(figsize = (4,4))
nx.draw(G4, pos = nx.circular_layout(G4),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#二维方格图
G5 = nx.grid_graph((6,6),periodic=False)
plt.figure(figsize = (4,4))
nx.draw(G5, with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()

二、ER随机网络的生成算法

(1)G(N,L)模型:N个节点通过L条随机放置的链接彼此相连

(2)G(N,p)模型:N个节点中,每对节点之间以概率p彼此相连

G(N,p)步骤如下:

(1)从N个孤立节点开始

(2)选择一对节点,产生一个0到1之间的随机数。如果该随机数小于p,在这对节点之间放置一条链接;否则,该节点对保持不连接。

(3)对所有N(N - 1)/2个节点对,重复步骤。

编程实践:

import random
import itertoolsimport matplotlib.pyplot as plt
import networkx as nxdef GNL(N,L):G = nx.Graph()G.add_nodes_from(range(N))nlist = list(G)edge_count = 0while edge_count < L:u = random.choice(nlist)v = random.choice(nlist)if u == v or G.has_edge(u,v):continueelse:G.add_edge(u,v)edge_count += 1return G
# G = GNL(100,200)def GNP(N,p):edges = itertools.combinations(range(N), 2)G = nx.Graph()G.add_nodes_from(range(N))nlist = list(G)for u,v in itertools.combinations(nlist,2):if random.random() < p:G.add_edge(u,v)return G
# G = GNP(100,0.2)
#可以直接调用库函数来生成这种两种网络
n,m,p = 10,20,0.2
g1 = nx.gnm_random_graph(n,m)
g2 = nx.erdos_renyi_graph(n,p)plt.figure(figsize = (8,4))
nx.draw(g1, pos = nx.circular_layout(g1),with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.title("G(N,L)")
plt.show()nx.draw(g2, pos = nx.circular_layout(g2),with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.title("G(N,p)")
plt.show()

三、ER随机网络结构特征

期望连边数,在连接概率为p的ER随机图中,可知其平均度为 pN

ER随机网络的度分布:规模小服从二项分布,规模大时服从泊松分布

编程实践:

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy import stats#定义求度分布函数
def get_pdf(G,kmin,kmax):k = list(range(kmin,kmax + 1))N = len(G.nodes())Pk = []for ki in k:c = 0for i in G.nodes():if G.degree(i) == ki:c += 1Pk.append(c/N)return k,Pksamples = 100 #统计平均
N = [100,1000]kmin,kmax,avk = 20,80,50
s1 = np.zeros(kmax - kmin + 1)
s2 = np.zeros(kmax - kmin + 1)
for i in range(samples):ER1 = nx.gnp_random_graph(N[0],avk/N[0])x1,y1 = get_pdf(ER1,kmin,kmax)ER2 = nx.gnp_random_graph(N[1],avk/N[1])x2,y2 = get_pdf(ER2,kmin,kmax)s1 += np.array(y1)s2 += np.array(y2)#计算二项分布理论值
n = 100
p = 0.5
k = np.arange(20,81)
pk_b = stats.binom.pmf(k,n,p)#计算泊松分布理论值
pk_p = [np.exp(-avk)*(avk**ki)/math.factorial(ki) for ki in range(kmin,kmax + 1)]plt.figure(figsize=(6,4))
plt.plot(x1, s1/samples, 'ro', label='$N = 100$')
plt.plot(x2, s2/samples, 'bs', label='$N = 1000$')
plt.plot(x2, pk_b, 'g-', label='binomial')
plt.plot(x2, pk_p, 'r-', label='poisson')
plt.legend(loc=0)
plt.xlabel("$k$")
plt.ylabel("$p_k$")
plt.xlim([20,80])
plt.show()

相关文章:

复杂网络(四)

一、规则网络 孤立节点网络全局耦合网络&#xff08;又称完全网络&#xff09;星型网络一维环二维晶格 编程实践&#xff1a; import networkx as nx import matplotlib.pyplot as pltn 10 #创建孤立节点图 G1 nx.Graph() G1.add_nodes_from(list(range(n))) plt.figure(f…...

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…...

SQL优化与性能——数据库设计优化

数据库设计优化是提高数据库性能、确保数据一致性和支持业务增长的关键环节。无论是大型企业应用还是小型项目&#xff0c;合理的数据库设计都能够显著提升系统性能、减少冗余数据、优化查询响应时间&#xff0c;并降低维护成本。本章将深入探讨数据库设计中的几个关键技术要点…...

FPGA存在的意义:为什么adc连续采样需要fpga来做,而不会直接用iic来实现

FPGA存在的意义&#xff1a;为什么adc连续采样需要fpga来做&#xff0c;而不会直接用iic来实现 原因ADS111x连续采样实现连续采样功能说明iic读取adc的数据速率 VS adc连续采样的速率adc连续采样的速率iic读取adc的数据速率结论分析 FPGA读取adc数据问题一&#xff1a;读取adc数…...

我们来学mysql -- 事务之概念(原理篇)

事务的概念 题记一个例子一致性隔离性原子性持久性 题记 在漫长的编程岁月中&#xff0c;存在一如既往地贯穿着工作&#xff0c;面试的概念这类知识点&#xff0c;事不关己当然高高挂起&#xff0c;精准踩坑时那心情也的却是日了&#x1f436;请原谅我的粗俗&#xff0c;遇到B…...

基于特征子空间的高维异常检测:一种高效且可解释的方法

本文将重点探讨一种替代传统单一检测器的方法&#xff1a;不是采用单一检测器分析数据集的所有特征&#xff0c;而是构建多个专注于特征子集(即子空间)的检测器系统。 在表格数据的异常检测实践中&#xff0c;我们的目标是识别数据中最为异常的记录&#xff0c;这种异常性可以…...

看不见的彼方:交换空间——小菜一碟

有个蓝色的链接&#xff0c;先去看看两年前的题目的write up &#xff08;https://github.com/USTC-Hackergame/hackergame2022-writeups/blob/master/official/%E7%9C%8B%E4%B8%8D%E8%A7%81%E7%9A%84%E5%BD%BC%E6%96%B9/README.md&#xff09; 从别人的write up中了解到&…...

YOLO模型训练后的best.pt和last.pt区别

在选择YOLO模型训练后的权重文件best.pt和last.pt时&#xff0c;主要取决于具体的应用场景‌&#xff1a;‌12 ‌best.pt‌&#xff1a;这个文件保存的是在训练过程中表现最好的模型权重。通常用于推理和部署阶段&#xff0c;因为它包含了在验证集上表现最好的模型权重&#x…...

Pareidoscope - 语言结构关联工具

文章目录 关于 Pareidoscope安装使用方法输入格式语料库查询 将语料库转换为 SQLite3 数据库两种语言结构之间的关联简单词素分析关联共现和伴随词素分析相关的更大结构可视化关联结构 关于 Pareidoscope Pareidoscope 是一组 用于确定任意语言结构之间 关联的工具&#xff0c…...

GPT(Generative Pre-trained Transformer) 和 Transformer的比较

GPT&#xff08;Generative Pre-trained Transformer&#xff09; 和 Transformer 的比较 flyfish 1. Transformer 是一种模型架构 Transformer 是一种通用的神经网络架构&#xff0c;由 Vaswani 等人在论文 “Attention Is All You Need”&#xff08;2017&#xff09;中提…...

软件无线电(SDR)的架构及相关术语

今天简要介绍实现无线电系统调制和解调的主要方法&#xff0c;这在软件定义无线电(SDR)的背景下很重要。 外差和超外差 无线电发射机有两种主要架构——一种是从基带频率直接调制到射频频率&#xff08;称为外差&#xff09;&#xff0c;而第二种超外差是通过两个调制阶段来实…...

Python将Excel文件转换为JSON文件

工作过程中,需要从 Excel 文件中读取数据,然后交给 Python 程序处理数据,中间需要把 Excel 文件读取出来转为 json 格式,再进行下一步数据处理。 这里我们使用pandas库,这是一个强大的数据分析工具,能够方便地读取和处理各种数据格式。需要注意的是还需要引入openpyxl库,…...

排序算法之选择排序篇

思想&#xff1a; 每次从未排序的部分找出最小的元素&#xff0c;将其放到已排序部分的末尾 从数据结构中找到最小值&#xff0c;放到第一位&#xff0c;放到最前面&#xff0c;之后再从剩下的元素中找出第二小的值放到第二位&#xff0c;以此类推。 实现思路&#xff1a; 遍…...

sizeof和strlen区分,(好多例子)

sizeof算字节大小 带\0 strlen算字符串长度 \0之前...

A050-基于spring boot物流管理系统设计与实现

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600…...

[自然语言处理] NLP-RNN及其变体-干货

一、认识RNN模型 1 什么是RNN模型 RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出. 一般单层神经网络结构: RNN单层网络结构: 以时间步对RNN进行展开后的单层…...

Elasticsearch ILM 索引生命周期管理讲解与实战

ES ILM 索引生命周期管理讲解与实战 Elasticsearch ILM索引生命周期管理:深度解析与实战演练1. 引言1.1 背景介绍1.2 研究意义2. ILM核心概念2.1 ILM的四个阶段2.1.1 Hot阶段2.1.2 Warm阶段2.1.3 Cold阶段2.1.4 Delete阶段3. ILM实战指南3.1 定义ILM策略3.1.1 创建ILM策略3.1.…...

重塑视频新语言,让每一帧都焕发新生——Video-Retalking,开启数字人沉浸式交流新纪元!

模型简介 Video-Retalking 模型是一种基于深度学习的视频再谈话技术&#xff0c;它通过分析视频中的音频和图像信息&#xff0c;实现视频角色口型、表情乃至肢体动作的精准控制与合成。这一技术的实现依赖于强大的技术架构和核心算法&#xff0c;特别是生成对抗网络&#xff0…...

联想Lenovo SR650服务器硬件监控指标解读

随着企业IT架构的复杂性和业务需求的增长&#xff0c;服务器的稳定运行变得至关重要。联想Lenovo SR650服务器以其高性能和稳定性&#xff0c;在各类应用场景中发挥着关键作用。为了保障服务器的稳定运行&#xff0c;监控易作为一款专业的IT基础设施监控软件&#xff0c;为联想…...

二十一、QT C++

1.1QT介绍 1.1.1 QT简介 Qt 是一个跨平台的应用程序和用户界面框架&#xff0c;用于开发图形用户界面&#xff08;GUI&#xff09;应用程序以及命令行工具。它最初由挪威的 Trolltech &#xff08;奇趣科技&#xff09;公司开发&#xff0c;现在由 Qt Company 维护&#xff…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...