当前位置: 首页 > news >正文

复杂网络(四)

一、规则网络

  1. 孤立节点网络
  2. 全局耦合网络(又称完全网络)
  3. 星型网络
  4. 一维环
  5. 二维晶格

编程实践:

import networkx as nx
import matplotlib.pyplot as pltn = 10
#创建孤立节点图
G1 = nx.Graph()
G1.add_nodes_from(list(range(n)))
plt.figure(figsize = (4,4))
nx.draw(G1, pos = nx.circular_layout(G1),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建完全图
G2 = nx.complete_graph(n)
plt.figure(figsize = (4,4))
nx.draw(G2, pos = nx.circular_layout(G2),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建一维环状图
G3 = nx.cycle_graph(n)
plt.figure(figsize = (4,4))
nx.draw(G3,pos = nx.circular_layout(G3),node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#创建K近邻(耦合)图
G4 = nx.watts_strogatz_graph(n,4,0)
plt.figure(figsize = (4,4))
nx.draw(G4, pos = nx.circular_layout(G4),with_labels = True, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()#二维方格图
G5 = nx.grid_graph((6,6),periodic=False)
plt.figure(figsize = (4,4))
nx.draw(G5, with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.show()

二、ER随机网络的生成算法

(1)G(N,L)模型:N个节点通过L条随机放置的链接彼此相连

(2)G(N,p)模型:N个节点中,每对节点之间以概率p彼此相连

G(N,p)步骤如下:

(1)从N个孤立节点开始

(2)选择一对节点,产生一个0到1之间的随机数。如果该随机数小于p,在这对节点之间放置一条链接;否则,该节点对保持不连接。

(3)对所有N(N - 1)/2个节点对,重复步骤。

编程实践:

import random
import itertoolsimport matplotlib.pyplot as plt
import networkx as nxdef GNL(N,L):G = nx.Graph()G.add_nodes_from(range(N))nlist = list(G)edge_count = 0while edge_count < L:u = random.choice(nlist)v = random.choice(nlist)if u == v or G.has_edge(u,v):continueelse:G.add_edge(u,v)edge_count += 1return G
# G = GNL(100,200)def GNP(N,p):edges = itertools.combinations(range(N), 2)G = nx.Graph()G.add_nodes_from(range(N))nlist = list(G)for u,v in itertools.combinations(nlist,2):if random.random() < p:G.add_edge(u,v)return G
# G = GNP(100,0.2)
#可以直接调用库函数来生成这种两种网络
n,m,p = 10,20,0.2
g1 = nx.gnm_random_graph(n,m)
g2 = nx.erdos_renyi_graph(n,p)plt.figure(figsize = (8,4))
nx.draw(g1, pos = nx.circular_layout(g1),with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.title("G(N,L)")
plt.show()nx.draw(g2, pos = nx.circular_layout(g2),with_labels = False, node_size = 500, node_color = 'r', font_size = 10, font_weight = 'bold')
plt.title("G(N,p)")
plt.show()

三、ER随机网络结构特征

期望连边数,在连接概率为p的ER随机图中,可知其平均度为 pN

ER随机网络的度分布:规模小服从二项分布,规模大时服从泊松分布

编程实践:

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import math
from scipy import stats#定义求度分布函数
def get_pdf(G,kmin,kmax):k = list(range(kmin,kmax + 1))N = len(G.nodes())Pk = []for ki in k:c = 0for i in G.nodes():if G.degree(i) == ki:c += 1Pk.append(c/N)return k,Pksamples = 100 #统计平均
N = [100,1000]kmin,kmax,avk = 20,80,50
s1 = np.zeros(kmax - kmin + 1)
s2 = np.zeros(kmax - kmin + 1)
for i in range(samples):ER1 = nx.gnp_random_graph(N[0],avk/N[0])x1,y1 = get_pdf(ER1,kmin,kmax)ER2 = nx.gnp_random_graph(N[1],avk/N[1])x2,y2 = get_pdf(ER2,kmin,kmax)s1 += np.array(y1)s2 += np.array(y2)#计算二项分布理论值
n = 100
p = 0.5
k = np.arange(20,81)
pk_b = stats.binom.pmf(k,n,p)#计算泊松分布理论值
pk_p = [np.exp(-avk)*(avk**ki)/math.factorial(ki) for ki in range(kmin,kmax + 1)]plt.figure(figsize=(6,4))
plt.plot(x1, s1/samples, 'ro', label='$N = 100$')
plt.plot(x2, s2/samples, 'bs', label='$N = 1000$')
plt.plot(x2, pk_b, 'g-', label='binomial')
plt.plot(x2, pk_p, 'r-', label='poisson')
plt.legend(loc=0)
plt.xlabel("$k$")
plt.ylabel("$p_k$")
plt.xlim([20,80])
plt.show()

相关文章:

复杂网络(四)

一、规则网络 孤立节点网络全局耦合网络&#xff08;又称完全网络&#xff09;星型网络一维环二维晶格 编程实践&#xff1a; import networkx as nx import matplotlib.pyplot as pltn 10 #创建孤立节点图 G1 nx.Graph() G1.add_nodes_from(list(range(n))) plt.figure(f…...

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…...

SQL优化与性能——数据库设计优化

数据库设计优化是提高数据库性能、确保数据一致性和支持业务增长的关键环节。无论是大型企业应用还是小型项目&#xff0c;合理的数据库设计都能够显著提升系统性能、减少冗余数据、优化查询响应时间&#xff0c;并降低维护成本。本章将深入探讨数据库设计中的几个关键技术要点…...

FPGA存在的意义:为什么adc连续采样需要fpga来做,而不会直接用iic来实现

FPGA存在的意义&#xff1a;为什么adc连续采样需要fpga来做&#xff0c;而不会直接用iic来实现 原因ADS111x连续采样实现连续采样功能说明iic读取adc的数据速率 VS adc连续采样的速率adc连续采样的速率iic读取adc的数据速率结论分析 FPGA读取adc数据问题一&#xff1a;读取adc数…...

我们来学mysql -- 事务之概念(原理篇)

事务的概念 题记一个例子一致性隔离性原子性持久性 题记 在漫长的编程岁月中&#xff0c;存在一如既往地贯穿着工作&#xff0c;面试的概念这类知识点&#xff0c;事不关己当然高高挂起&#xff0c;精准踩坑时那心情也的却是日了&#x1f436;请原谅我的粗俗&#xff0c;遇到B…...

基于特征子空间的高维异常检测:一种高效且可解释的方法

本文将重点探讨一种替代传统单一检测器的方法&#xff1a;不是采用单一检测器分析数据集的所有特征&#xff0c;而是构建多个专注于特征子集(即子空间)的检测器系统。 在表格数据的异常检测实践中&#xff0c;我们的目标是识别数据中最为异常的记录&#xff0c;这种异常性可以…...

看不见的彼方:交换空间——小菜一碟

有个蓝色的链接&#xff0c;先去看看两年前的题目的write up &#xff08;https://github.com/USTC-Hackergame/hackergame2022-writeups/blob/master/official/%E7%9C%8B%E4%B8%8D%E8%A7%81%E7%9A%84%E5%BD%BC%E6%96%B9/README.md&#xff09; 从别人的write up中了解到&…...

YOLO模型训练后的best.pt和last.pt区别

在选择YOLO模型训练后的权重文件best.pt和last.pt时&#xff0c;主要取决于具体的应用场景‌&#xff1a;‌12 ‌best.pt‌&#xff1a;这个文件保存的是在训练过程中表现最好的模型权重。通常用于推理和部署阶段&#xff0c;因为它包含了在验证集上表现最好的模型权重&#x…...

Pareidoscope - 语言结构关联工具

文章目录 关于 Pareidoscope安装使用方法输入格式语料库查询 将语料库转换为 SQLite3 数据库两种语言结构之间的关联简单词素分析关联共现和伴随词素分析相关的更大结构可视化关联结构 关于 Pareidoscope Pareidoscope 是一组 用于确定任意语言结构之间 关联的工具&#xff0c…...

GPT(Generative Pre-trained Transformer) 和 Transformer的比较

GPT&#xff08;Generative Pre-trained Transformer&#xff09; 和 Transformer 的比较 flyfish 1. Transformer 是一种模型架构 Transformer 是一种通用的神经网络架构&#xff0c;由 Vaswani 等人在论文 “Attention Is All You Need”&#xff08;2017&#xff09;中提…...

软件无线电(SDR)的架构及相关术语

今天简要介绍实现无线电系统调制和解调的主要方法&#xff0c;这在软件定义无线电(SDR)的背景下很重要。 外差和超外差 无线电发射机有两种主要架构——一种是从基带频率直接调制到射频频率&#xff08;称为外差&#xff09;&#xff0c;而第二种超外差是通过两个调制阶段来实…...

Python将Excel文件转换为JSON文件

工作过程中,需要从 Excel 文件中读取数据,然后交给 Python 程序处理数据,中间需要把 Excel 文件读取出来转为 json 格式,再进行下一步数据处理。 这里我们使用pandas库,这是一个强大的数据分析工具,能够方便地读取和处理各种数据格式。需要注意的是还需要引入openpyxl库,…...

排序算法之选择排序篇

思想&#xff1a; 每次从未排序的部分找出最小的元素&#xff0c;将其放到已排序部分的末尾 从数据结构中找到最小值&#xff0c;放到第一位&#xff0c;放到最前面&#xff0c;之后再从剩下的元素中找出第二小的值放到第二位&#xff0c;以此类推。 实现思路&#xff1a; 遍…...

sizeof和strlen区分,(好多例子)

sizeof算字节大小 带\0 strlen算字符串长度 \0之前...

A050-基于spring boot物流管理系统设计与实现

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600…...

[自然语言处理] NLP-RNN及其变体-干货

一、认识RNN模型 1 什么是RNN模型 RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出. 一般单层神经网络结构: RNN单层网络结构: 以时间步对RNN进行展开后的单层…...

Elasticsearch ILM 索引生命周期管理讲解与实战

ES ILM 索引生命周期管理讲解与实战 Elasticsearch ILM索引生命周期管理:深度解析与实战演练1. 引言1.1 背景介绍1.2 研究意义2. ILM核心概念2.1 ILM的四个阶段2.1.1 Hot阶段2.1.2 Warm阶段2.1.3 Cold阶段2.1.4 Delete阶段3. ILM实战指南3.1 定义ILM策略3.1.1 创建ILM策略3.1.…...

重塑视频新语言,让每一帧都焕发新生——Video-Retalking,开启数字人沉浸式交流新纪元!

模型简介 Video-Retalking 模型是一种基于深度学习的视频再谈话技术&#xff0c;它通过分析视频中的音频和图像信息&#xff0c;实现视频角色口型、表情乃至肢体动作的精准控制与合成。这一技术的实现依赖于强大的技术架构和核心算法&#xff0c;特别是生成对抗网络&#xff0…...

联想Lenovo SR650服务器硬件监控指标解读

随着企业IT架构的复杂性和业务需求的增长&#xff0c;服务器的稳定运行变得至关重要。联想Lenovo SR650服务器以其高性能和稳定性&#xff0c;在各类应用场景中发挥着关键作用。为了保障服务器的稳定运行&#xff0c;监控易作为一款专业的IT基础设施监控软件&#xff0c;为联想…...

二十一、QT C++

1.1QT介绍 1.1.1 QT简介 Qt 是一个跨平台的应用程序和用户界面框架&#xff0c;用于开发图形用户界面&#xff08;GUI&#xff09;应用程序以及命令行工具。它最初由挪威的 Trolltech &#xff08;奇趣科技&#xff09;公司开发&#xff0c;现在由 Qt Company 维护&#xff…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...